In Luke's recent post on what sort of posts we would like to see more of, one suggestion was "Open Thread: Math". This suggestion has been voted up by (at least) 12 people. Since it's going to take me less than 2 minutes to type this post, I figured I might as well just go ahead and post the thread, rather than vote up the suggestion.
So, this is an open thread on mathematics. As things stand, I have no idea what the rules should be (I don't know what the people who voted up the post suggestion expected the rules to be), but I guess the general principle should be that we have maths questions which are vaguely related to LW-type ideas, as there are plenty of more appropriate fora for general mathematical discussion already out there.
Cox's theorem requires finite additivity of probability, but not countable additivity. The Solomonoff prior, however, only makes sense given countable additivity. Is there any research on how this can be reconciled? Maybe there's a self evident axiom that can be used to prove countable additivity?
For probability to be a measure, which it's usually defined to be, it must be countably additive.