In Luke's recent post on what sort of posts we would like to see more of, one suggestion was "Open Thread: Math". This suggestion has been voted up by (at least) 12 people. Since it's going to take me less than 2 minutes to type this post, I figured I might as well just go ahead and post the thread, rather than vote up the suggestion.
So, this is an open thread on mathematics. As things stand, I have no idea what the rules should be (I don't know what the people who voted up the post suggestion expected the rules to be), but I guess the general principle should be that we have maths questions which are vaguely related to LW-type ideas, as there are plenty of more appropriate fora for general mathematical discussion already out there.
There's a uniform prior that works just fine for this. (I think that EY's infinite set atheism might have left you with the notion that only discrete, finite sets can have uniform priors. This is false.)
Namely, if you take any interval in [0,1] of length p, then your prior probability of X lying in that interval equals p.
Obvious corollary: your prior probability for X equaling a particular real number is zero. No amount of evidence can let you conclude the exact value of X, just narrower and narrower intervals to which it belongs. If you're in a situation where you expect it's possible to find out that the answer is some exact real number, then you need to take a prior which accounts for this, and averages this "continuous" prior with a countable discrete prior over the exact values that it could conceivably take. (There are several different questions and objections you could raise here, but this actually works, and I'm happy to say more if you want.)
Yeah, you can have a uniform continuous distribution on a finite interval. The problem is that it's not actually uninformative: if you know nothing about x other than that x is in [0,1], you also know nothing about x^2 other than that it, too, is in [0,1] - but if you use the uniform distribution for x, then you're not using a uniform distribution for x^2... I think the Jeffreys prior was supposed to solve this problem, but I don't really understand what a Jeffreys prior is in general...