In Luke's recent post on what sort of posts we would like to see more of, one suggestion was "Open Thread: Math". This suggestion has been voted up by (at least) 12 people. Since it's going to take me less than 2 minutes to type this post, I figured I might as well just go ahead and post the thread, rather than vote up the suggestion.
So, this is an open thread on mathematics. As things stand, I have no idea what the rules should be (I don't know what the people who voted up the post suggestion expected the rules to be), but I guess the general principle should be that we have maths questions which are vaguely related to LW-type ideas, as there are plenty of more appropriate fora for general mathematical discussion already out there.
Yeah, you can have a uniform continuous distribution on a finite interval. The problem is that it's not actually uninformative: if you know nothing about x other than that x is in [0,1], you also know nothing about x^2 other than that it, too, is in [0,1] - but if you use the uniform distribution for x, then you're not using a uniform distribution for x^2... I think the Jeffreys prior was supposed to solve this problem, but I don't really understand what a Jeffreys prior is in general...
Well, x^2 isn't an isometry, so you shouldn't expect it to leave the prior unchanged.
Let me put it this way: if Omega told you ve had a real number x between 0 and 1, and then ve told you that x^1000 was between 3/10 and 4/10, you probably should be more surprised than if ve told you that x^1000 was between 0 and 1/10. Yes, you could pick your prior to have a uniform distribution for x^1000 rather than for x, but that doesn't seem a natural choice in general.