In Luke's recent post on what sort of posts we would like to see more of, one suggestion was "Open Thread: Math". This suggestion has been voted up by (at least) 12 people. Since it's going to take me less than 2 minutes to type this post, I figured I might as well just go ahead and post the thread, rather than vote up the suggestion.
So, this is an open thread on mathematics. As things stand, I have no idea what the rules should be (I don't know what the people who voted up the post suggestion expected the rules to be), but I guess the general principle should be that we have maths questions which are vaguely related to LW-type ideas, as there are plenty of more appropriate fora for general mathematical discussion already out there.
Math-wise, basically you pick whatever distribution maximizes integral from negative infinity to infinity of p(x)log(p(x)) with respect to x, multiplied by -1. So -Sp(x)log(p(x))dx.
The crux of this making sense is that that value can be interpreted as the amount of information you expect to learn from hearing that x happened. Or more straightforwardly, its how much you expect to not know about a particular variable/event. If you use log base 2, its measured in the average number of yes/no questions needed to concisely learn that it happened. For an explanation of why that's true, these articles are excellent.
The reason that you want to maximize this value in the distribution is that not doing so assumes that you have information that you don't know. Say you have 5 bits of entropy in the maximum entropy distribution, and 4 in some other one. If you choose the4 bit one then you're basically making up information by thinking that you need one fewer yes/no question than you actually do.