The recent publication of Gato spurred a lot of discussion on wheter we may be witnessingth the first example of AGI. Regardless of this debate, Gato's makes use of recent developments in reinforcement learning, that is using supervised learning on reinforcement learning trajectories by exploiting the ability of transformer architectures to proficiently handle sequential data.
Reading the comments it seems that this point created some confusion to readers not familiar with these techniques. Some time ago I wrote an introductory article to how transformers can be used in reinforcement learning which may be helpful to clarify some of these doubts: https://lorenzopieri.com/rl_transformers/
Somewhat tangential to your post (which I only just started reading), but what would you suggest for people mostly-new to ML/DL – learn about all/most of the historical models/frameworks/architectures, or focus only/mostly on the 'SOTA' (state of the art)?
For concreteness, I've been following 'AI' for decades, tho mostly at an abstract high-level. (Neural networks were mostly impractical on my first PCs.) I recently decided to get some 'hands on' training/practice and completed Andrew Ng's Machine Learning course on Coursera (a few years ago). I'm tentatively reconsidering looking for a job opportunity in AI alignment/safety and so it occurred to me learn some more about working with the actual models that have been or are being used. But your intro about how transformers have 'obsoleted' various older models/frameworks/architectures made me think that it might be better to just skip a lot of the 'survey' I would have otherwise done.
Wonderful – I'll keep that in mind when I get around to reviewing/skimming that outline. Thanks for sharing it.
I have a particularly idiosyncratic set of reasons for the particular kind of 'yak shaving' I'm thinking of, but your advice, i.e. to NOT do any yak shaving, is noted and appreciated.