The recent publication of Gato spurred a lot of discussion on wheter we may be witnessingth the first example of AGI. Regardless of this debate, Gato's makes use of recent developments in reinforcement learning, that is using supervised learning on reinforcement learning trajectories by exploiting the ability of transformer architectures to proficiently handle sequential data.
Reading the comments it seems that this point created some confusion to readers not familiar with these techniques. Some time ago I wrote an introductory article to how transformers can be used in reinforcement learning which may be helpful to clarify some of these doubts: https://lorenzopieri.com/rl_transformers/
Thanks for the reply! This seems helpful and, I think, matches what I expected might be a good heuristic.
I'm not sure I know how to identify "the architectures which brought significant changes and ideas" – beyond what I've already been doing, i.e. following some 'feeds' and 'skimming headlines' with an occasional full read of posts like this.
What would you think about mostly focusing on SOTA and then, as needed, and potentially recursively, learning about the 'prior art' on which the current SOTA is built/based? Or does the "Full Stack Deep Learning" course materials provide a (good-enough) outline of all of the significant architectures worth learning about?
A side project I briefly started a little over a year ago, but have since mostly abandoned, was to re-implement the examples/demos from the Machine Learning course I took. I found the practical aspect to be very helpful – it was also my primary goal for taking the course; getting some 'practice'. Any suggestions about that for this 'follow-up survey'? For my side project, I was going to re-implement the basic models covered by that first course in a new environment/programming-language, but maybe that's too much 'yak shaving' for a broad survey.