I wrote a comment that captures a core part of what I'm trying to explain, so I will copy it here in its own post.
If we take as assumption that everything humans have observed has been made up of smaller physical parts (except possibly for the current elementary particles du jour, but that doesn’t matter for the sake of this argument) and that the macro state is entirely determined by the micro state (regardless of if it’s easy to compute for humans), there is a simple conclusion that follows logically from that.
This conclusion is that nothing extraphysical can have any predictive power above what we can predict from knowledge about physics. This follows because for something to have predictive power, it needs to have some influence on what happens. If it doesn’t have any influence on what happens, its existence and non-existence cannot allow us to make any conclusions about the world.
This argument applies to mathematics: if the existence of mathematics separately from physics allowed us to make any conclusions about the world, it would have to have a causal effect on what happens, which would contradict the fact that all macro state we’ve ever observed has been determined by just the micro state.
Since the original assumption is one with very strong evidence backing it, it’s safe to conclude that, in general, whenever we think something extraphysical is required to explain the known facts, we have to be making a mistake somewhere.
It may seem like just a simple tautology, but tautologies and their consequences are not always obvious, and this particular tautology has many, many consequences. It can help to avoid many confusions about things like mathematics, qualia, free will, subjective probability, and truth. I consider that noticing this tautology and deciding to ground my philosophy on it to be in the top 3 best decisions I've ever made.
One particularly important consequence of this observation is that we can apply the basic tenet of rationality that says that we should not believe things without evidence to rule out any philosophy which assumes the existence of extraphysical things.
Note that you do not need to reject any mathematics to accept this philosophy, as I attempted to explain in my previous post. The most important thing I was attempting with that post was showing one way to break down mathematics to physics without falling into the trap of rejecting large swaths of mathematics. Naturally, I am less confident that my specific way of breaking it down is correct than the fact that there has to exist such a breakdown.
One very important thing to do when applying this approach to philosphy is to remember that everything should add up to normality. When we can't figure out how to break things down to physics in a way that adds up to normality, we are very likely to be making a mistake. I have in general been able to integrate this philosophy into my beliefs and have it all add up to normality.
Edit: While this argument holds for any explanation of macro phenomena that relies on the existence of non-physical things, it does not apply to explanations of why the laws of physics are what they are, or explanations that allow us to predict the initial configuration of the universe. I will note that all human experience with mathematics falls into the bucket of macro phenomena, and that positing a mathematical universe does not actually give any predictive power for why the laws of physics are what they are, or why the physical world is ordered this way.
It's this one.
Given that you're asking this question, I still haven't been clear enough. I'll try to explain it one last time. This time I'll talk about Conway's Game of Life and AI. The argument will carry over straightforwardly to physics and humans. (I know that Conway's Game of life is made up of discrete cells, but I won't be using that fact in the following argument.)
Suppose there is a Game of Life board which has an initial state which will simulate an AI. Hopefully it is inarguable that the AI's behavior is entirely determined by the cell states and GoL rules.
Now suppose that as the game board evolves, the AI discovers Peano Arithmetic, derives "2 + 2 = 4", and observes that this corresponds to what happens when it puts 2 apples in a bag that already contains 2 apples (there are apple-like things in the AI's simulation). The fact that the AI derives "2 + 2 = 4", and the fact that it observes a correspondence between this and the apples, has to be entirely determined by the rules of the Game of Life and the initial state.
In case this seems too simple and obvious so far and you're wondering if you're missing something, you're probably not missing anything, this is meant to be simple and obvious.
If the AI notices how deep and intricate math is, how its many branches seem to be greatly interconnected with each other, and postulates that math is unreasonably effective. This also has to be caused entirely by the initial state and rules of the Game of Life. And if the Game of Life board is made up of sets embedded inside some model of set theory, or if it's not embedded in anything and is just the only thing in all of existence, in either case nothing changes about the AI's observations or actions and nothing ought to change about its predictions!
And if the existence or non-existence of something changes nothing about what it will observe, then using its existence to "explain" any of its observations is a contradiction in terms. This means that even its observation of the unreasonable effectiveness of math cannot be explained by the existence of a mathematical universe outside of the Game of Life board.
Connecting this back to what I was saying before, the "small parts" here are the cells of the Game of Life. You'll note that it doesn't matter if we replace the Game of Life by some other similar game where the board is a continuum. It also doesn't even matter if the act of translating statements about the AI into statements about the board is uncomputable. All that matters is that the AI's behavior is entirely determined by the "small parts".
You might have noticed a loophole in this argument, in that even though the existence of math cannot change anything past the initial board state, if the board was embedded inside a model of set theory, then it would be that model which determined the initial state and rules. However, since the existence of math is compatible with every consistent set of rules and literally every initial board state, knowing this would also give no predictive power to the AI.
At best the AI could try to argue that being embedded inside a mathematical universe explains why the Game of Life rules are consistent. But then it would still be a mystery why the mathematical universe itself follows consistent rules, so in the end the AI would be left with just as many questions as it started with.