To reductively explain causality, it has to be explained in non-causal terms, most likely in terms of total propability distributions. Pearl explains causality in terms of causal graphs which are created by conditionalizing the propability distribution on not , but . What does this mean? It's easy enough to explain in causal terms: You make it so occurs without changing any of its causal antecedents. But of course that fails to explain causality. How could it be explained without that?
I don't think one should see Pearl-type theories, which fall under the general heading of interventionist accounts, as reductive theories, i.e., as theories that reduce causal relations to something non-causal (even though Pearl might claim that his account is indeed reductive). I think such theories indeed make irreducible appeal to causal notions in explicating causal relations.
One reason why this isn't problematic is that these theories are explicating causal relations between some variables in terms of causal relations between those variables and the interventions and correlational information between the variables. So such theories are not employing causal information between the variables themselves in order to explain causal relations about them -- which would indeed be viciously circular. This point is explained clearly here.
If you want a reductive account of causation, I think that's a much harder problem, and indeed there might not even be one. See here for more details on attempts to provide reductive accounts of causation.