To reductively explain causality, it has to be explained in non-causal terms, most likely in terms of total propability distributions. Pearl explains causality in terms of causal graphs which are created by conditionalizing the propability distribution on not , but . What does this mean? It's easy enough to explain in causal terms: You make it so occurs without changing any of its causal antecedents. But of course that fails to explain causality. How could it be explained without that?
To be clear, by total propability distribution I mean a distribution over all possible conjunctions of events. A Markov model also creates a total propability distribution, but there are multiple Markov models with the same propability distribution. Believing in a Markov model is more specific, and so if we could do the same work with just propability distributions, then Occam would seem to demand we do.
My understanding is that you can't infer a causal graph from just a propability distribution. You need either causal assumptions or experiments to do that, and experimenting involves do()ing, so I'm asking if it can be explained what do()ing is in non-causal terms.
If there were a way to infer causal structure from just propability distributions, that would be an explanation. Infering them from something else might also work, but it depends on what the something is, and I don't think I can give you a list of viable options in advance.
Alternatively, you might say that causality can't be reduced to something else. In that case, I would like to know how I come to have beliefs about causality, and why this gives true answers. I have something like that for propability distributions: I have a prior and a rule to update it (how I come to believe it) and a theorem saying if I do that in the limit I'll always do at least as well as my best hypothesis with propability ≠ 0 in the prior (why it works).