Otherwise, some members of the broader Effective Altruism and rationality communities made a fair amount of money betting on the election.
I would caveat this by adding that people are probably more likely to mention that they invested in a prediction market when the market resolved in their favor.
This link doesn't work:
Highlights
- DeepMind claims a major breakthrough protein folding.
Highlights
Index
Sign up here or browse past newsletters here.
In the News
DeepMind claims a major breakthrough in protein folding (press release, secondary source)
The Organization of the Petroleum Exporting Countries (OPEC) forecasts slower growth and slower growth in oil demand (primary source, secondary source.) In particular, it forecasts long-term growth for OECD countries — which I take to mean that growth because of covid recovery is not counted — to be below 1%. On the one hand, their methodology is opaque, but on the other hand, I expect them to actually be trying to forecast growth and oil demand, because it directly impacts the amount of barrels it is optimal for them to produce.
Google and Harvard's Global Health Institute update their US covid model, and publish it on NeurIPS 2020 (press release), aiming to be robust, interpretable, extendable, and to have longer time horizons. They're also using it to advertise various Google products. It has been extended to Japan.
Prediction Markets & Forecasting Platforms
Gnosis announces the GnosisDAO (announcement, secondary source), an organization governed by prediction markets (i.e., a futarchy): "The mission of GnosisDAO is to successfully steward the Gnosis ecosystem through futarchy: governance by prediction markets."
Metaculus have a new report on forecasting covid vaccines, testing and economic impact (summary, full report). They also organized moderator elections and are hiring for a product manager.
Prediction markets have kept selling Trump not to be president in February at $0.85 to $0.9 ($0.9 as of now, where the contract resolves to $1 if Trump isn't president in February.) Non-American readers might want to explore PolyMarket or FTX, American readers with some time on their hands might want to actually put some money into PredictIt. Otherwise, some members of the broader Effective Altruism and rationality communities made a fair amount of money betting on the election.
CSET recorded Using Crowd Forecasts to Inform Policy with Jason Matheny, CSET's Founding Director, previously Director of IARPA. I particularly enjoyed the verbal history bits, the sheer expertise Jason Matheny radiated, and the comments on how the US government currently makes decisions.
As a personal highlight, I was referred to as "top forecaster Sempere" towards the end of this piece by CSET. I've since then lost the top spot, and I'm back to holding the second place.
I also organized the Forecasting Innovation Prize (LessWrong link), which offers $1000 for research and projects on judgemental forecasting. For inspiration, see the project suggestions. Another post of mine, Predicting the Value of Small Altruistic Projects: A Proof of Concept Experiment might also be of interest to readers in the Effective Altruism community. In particular, I'm looking for volunteers to expand it.
Negative Examples
Release of Covid-19 second wave death forecasting 'not in public interest', claims Scottish Government
United States Presidential Election Post-mortems
Thanks to the Metaculus Discord for suggestions for this section.
Independent postmortems
David Glidden's (@dglid) comprehensive spreadsheet comparing 538, the Economist, Smarkets and PredictIt in terms of Brier scores for everything. tl;dr: Prediction Markets did better in closer states. (see here for the log score.)
Hindsight is 2020; a nuanced take.
2020 Election: Prediction Markets versus Polling/Modeling Assessment and Postmortem.
Partisans, Sharps, And The Uninformed Quake US Election Market. tl;dr: "I find myself really torn between wanting people to be more rational and make better decisions. And then also, like, well, I want people to offer 8-1 on Trump being in office in February."
Amerian Mainstream Media
Mostly unnuanced.
FiveThirtyEight.
Andrew Gelman.
Hard to Categorize
Forbes on how to improve hurricane forecasting:
In wake of bad salmon season, Russia calls for new forecasting approach:
Political Polarization and Expected Economic Outcomes (summary)
Dart Throwing Spider Monkey proudly presents the third part of his Intro to Forecasting series: Building Probabalistic Intuition
A gentle introduction to information charts: a simple tool for thinking about probabilities in general, but in particular for predictions with a sample size of one.
A youtube playlist with forecasting content h/t Michal Dubrawski.
Farm-level outbreak forecasting tool expands to new regions
An article with some examples of Crime Location Forecasting, and on whether it can be construed as entrapment.
Why Forecasting Snow Is So Difficult: Because it is very sensitive to initial conditions.
Google looking for new ways to predict cyber-attackers' behavior.
Long Content
Taking a disagreeing perspective improves the accuracy of people's quantitative estimates, but this depends on the question type.
A 2016 article attacking Nate Silver's model, key to understanding why Nate Silver is often so smug.
Historical Presidential Betting Markets, in the US before 2004.
Note to the future: All links are added automatically to the Internet Archive. In case of link rot, go there and input the dead link.