The subject has already been raised in this thread, but in a clumsy fashion. So here is a fresh new thread, where we can discuss, calmly and objectively, the pros and cons of the "Oxford" version of the Many Worlds interpretation of quantum mechanics.
This version of MWI is distinguished by two propositions. First, there is no definite number of "worlds" or "branches". They have a fuzzy, vague, approximate, definition-dependent existence. Second, the probability law of quantum mechanics (the Born rule) is to be obtained, not by counting the frequencies of events in the multiverse, but by an analysis of rational behavior in the multiverse. Normally, a prescription for rational behavior is obtained by maximizing expected utility, a quantity which is calculated by averaging "probability x utility" for each possible outcome of an action. In the Oxford school's "decision-theoretic" derivation of the Born rule, we somehow start with a ranking of actions that is deemed rational, then we "divide out" by the utilities, and obtain probabilities that were implicit in the original ranking.
I reject the two propositions. "Worlds" or "branches" can't be vague if they are to correspond to observed reality, because vagueness results from an object being dependent on observer definition, and the local portion of reality does not owe its existence to how we define anything; and the upside-down decision-theoretic derivation, if it ever works, must implicitly smuggle in the premises of probability theory in order to obtain its original rationality ranking.
Some references:
"Decoherence and Ontology: or, How I Learned to Stop Worrying and Love FAPP" by David Wallace. In this paper, Wallace says, for example, that the question "how many branches are there?" "does not... make sense", that the question "how many branches are there in which it is sunny?" is "a question which has no answer", "it is a non-question to ask how many [worlds]", etc.
"Quantum Probability from Decision Theory?" by Barnum et al. This is a rebuttal of the original argument (due to David Deutsch) that the Born rule can be justified by an analysis of multiverse rationality.
Sorry. I edited my post to make it clearer before I saw yours, so the part you quoted has now disappeared. Anyway, I'm not entirely on board with the Deutsch-Wallace program, so I'm not going to offer a full defense of their view. I do want to make sure it's clear what they claim to be doing.
Consider a simpler case then the two-slit experiment: a Stern-Gerlach experiment on spin-1/2 particles prepared in the superposition sqrt(1/4) |up> + sqrt(3/4) |down>. Ignoring fuzzy world complications for now, the Everettian says that upon measurement of the particle, my branch will split into two branches. In one branch, a future self will observe spin-up, and in the other branch a future self will observe spin-down. All of this is determined by the Schrodinger dynamics. The Born probabilities don't enter into it.
Where the Born probabilities enter is in how I should behave pre-split. As an Everettian, I am not in a genuine state of subjective uncertainty about what will happen, but I am in the weird position of knowing that I'm going to be splitting. According to Wallace (and I'm not sure I agree with this), the appropriate way to behave in this circumstance is not as if I'm going to turn into two separate people. It is basically psychologically impossible for a human being to have this attitude. Instead, I should behave as if I am subjectively uncertain about which of the two future selves is going to be me. Perhaps on some intellectual level I know that both of them will be me, but we have not evolved to account for such fission in our decision-making processes, so I have to treat it as a case where I am going to end up as just one of them, but I don't know which one.
Adopting this position of faux subjective uncertainty, I should plan for the future as if maximizing expected utility. And if I am organizing my beliefs this way, the decision theoretic argument establishes that I should set my probabilities in accord with the Born rule. In this case, the probabilities do not stem from genuine uncertainty, and they do not represent frequencies. So the fact that I expect to see spin-down does not mean that spin-down is more likely to happen in any ordinary sense. It means that as a rational agent, I should behave as if I am more likely to head down the spin-down branch.
The problematic step here is the one where decision-making in a branching world is posited to have the same rational structure as decision-making in a situation of uncertainty, even though there is no genuine uncertainty. There are a number of arguments for and against this proposition that we can go into if you like. For now, suffice it to say that I remain unconvinced that this is the right way to make decisions when faced with fission, but I don't think the idea is completely insane. Wallace's thoughts on this question are here: http://philsci-archive.pitt.edu/3811/1/websites.pdf
There is still the problem that if all histories exist and if they exist equally, then the majority of them will look nothing like the real world, the shape of which depends upon some things happening more often than others. Regardless of the validity of this reasoning about "decision-making in a branch world", the characteristic experience of an agent in this sort of multiverse (where all possible histories exist equally) will be of randomness. If we think at the basic material level, agents shouldn't even exist in most branches; atoms will just... (read more)