Less Wrong is a community blog devoted to refining the art of human rationality. Please visit our About page for more information.

faul_sname comments on Should correlation coefficients be expressed as angles? - Less Wrong Discussion

43 Post author: Sniffnoy 28 November 2012 12:05AM

You are viewing a comment permalink. View the original post to see all comments and the full post content.

Comments (24)

You are viewing a single comment's thread. Show more comments above.

Comment author: faul_sname 28 November 2012 06:25:00PM *  3 points [-]

Apparently, some people can visualize more than 3 dimensions fairly easily. As for me, I use a little trick that engages the ability of my visual-spatial mind to visualize more than one object at a time.

To visualize a 6-sphere, I usually visualize a sphere of fixed size with three axes going through it. This sphere and the axes represent the higher-order dimensions. I then imagine myself somewhere in this three-dimensional space (specifically, somewhere inside the fixed sphere). I note the distance directly from the x, y, and z axes directly through me to the edge of the sphere. Each of these distances defines the radius of the 'visible surface' of the 6-sphere from that point in higher-order space looking from the x, y, or z axis respectively. By rotating the axes, the relative sizes of these surfaces change, and I'm guessing you can already visualize a rotating normal sphere in your mind. So you can rotate the 6-sphere in two sets of 3 dimensions fairly easily. Rotating between higher and lower dimensions is a bit more challenging, but still doable. For a 4- or 5- sphere, replace the 3-dimensional higher-order sphere with a circle, or just ignore the z axis.

If you can figure out how to do that, you can get a feeling for the possible orientations of the angles to one another. And that actually is fairly interesting, and the first time I really understood on a gut level why r^2 is used instead of r for correlations.

Comment author: Decius 29 November 2012 05:16:35PM 0 points [-]

Glad that works for you. I lose sight of where (0,0,1,0,0,0) is as soon as I rotate around any axis other than the z-axis, and I can never find (0,0,0,0,.707,.707) or any other point not on the reference plane for a higher-order dimension.