"Hypercomputation" is a term coined by two philosophers, Jack Copeland and Dianne Proudfoot, to refer to allegedly computational processes that do things Turing machines are in principle incapable of doing. I'm somewhat dubious of whether any of the proposals for "hypercomputation" are really accurately described as computation, but here, I'm more interested in another question: is there any chance it's possible to build a physical device that answers questions a Turing machine cannot answer?
I've read a number of Copeland and Proudfoot's articles promoting hypercomputation, and they claim this is an open question. I have, however, seen some indications that they're wrong about this, but my knowledge of physics and computability theory isn't enough to answer this question with confidence.
Some of the ways to convince yourself that "hypercomputation" might be physically possible seem like obvious confusions, for example if you convince yourself that some physical quality is allowed to be any real number, and then notice that because some reals are non-computable, you say to yourself that if only we could measure such a non-computable quantity then we could answer questions no Turing machine could answer. Of course, the idea of doing such a measurement is physically implausible even if you could find a non-computable physical quantity in the first place. And that mistake can be sexed up in various ways, for example by talking about "analog computers" and assuming "analog" means it has components that can take any real-numbered value.
Points similar to the one I've just made exist in the literature on hypercomputation (see here and here, for example). But the critiques of hypercomputation I've found tend to focus on specific proposals. It's less clear whether there are any good general arguments in the literature that hypercomputation is physically impossible, because it would require infinite-precision measurements or something equally unlikely. It seems like it might be possible to make such an argument; I've read that the laws of physics are consiered to be computable, but I don't have a good enough understanding of what that means to tell if it entails that hypercomputation is physically impossible.
Can anyone help me out here?
It's the class of every spacetime with the property. Examples besides the Kerr spacetime are the universal covering of anti-de Sitter spacetime, the Reissner-Nodstrom spacetime, even a simple Minkowski spacetime rolled up along the temporal axis (or in fact any spacetime with CTCs).
Fair point. The spacetime structure will indeed indefinitely amplify even the tiniest bit of thermal radiation. And it is also true that Landauer's principle tells us that a computational process must radiate heat.
But Landauer's principle is a consequence of the Second Law of Thermodynamics, and the Second Law is not, to the best of our knowledge, a fundamental law. It holds in our universe because of special boundary conditions, but it is entirely possible to construct universes with the same fundamental laws and different boundary conditions so that entropy stops increasing at some point in time and begins decreasing, or where entropy does not exhibit any significant monotonic tendency at all.
Does rigging boundary conditions in this manner take us outside the realm of physical possibility? Again, that depends on what the OP means by "physically possible". If all he means is "consistent with the fundamental laws of temporal evolution" then no, choosing special boundary conditions which negate the Second Law does not violate physical possibility. Of course, one would need very specifically (and implausibly) rigged boundary conditions in order to get a universe with a M-H setup that does not blow up, but astronomical unlikelihood is not the same as impossibility.
ETA: If you're interested, here's a nice paper showing that a Malament-Hogarth spacetime can be constructed that satisfies various criteria of physical reasonableness (energy conditions, stable causality, etc.).
What about the Drescher/Barbour argument that the Second Law is an ar... (read more)