Less Wrong is a community blog devoted to refining the art of human rationality. Please visit our About page for more information.

Comment author: moridinamael 16 January 2017 04:29:46PM 6 points [-]

Let me attempt to explain it in my own words.

You have a thought, and then you have some kind of emotional reaction to it, and that emotionally reaction should be felt in your body. Indeed, it is hard to have an emotion that doesn't have a physical component.

Say you think that you should call your mom, but then you feel a heaviness or a sinking in your gut, or a tightness in your neck or throat or jaw. These physical sensations are one of the main ways your subconscious tries to communicate with you. Let's further say that you don't know why you feel this way, and you can't say why you don't want to call your mom. You just find that you know you should call your mom but some part of you is giving you a really bad feeling about it. If you don't make an effort to untangle this mess, you'll probably just not call your mom, meaning whatever subconscious process originated those bad feelings in the first place will continue sitting under the surface and probably recapitulate the same reaction in similar situations.

If you gingerly try to "fit" the feeling with some words, as Gendlin says, the mind will either give you no feedback or it will give you a "yes, that's right" in the form of a further physical shift. This physical shift can be interpreted as the subconscious module acknowledging that its signal has been heard and ceasing to broadcast it.

I really don't think Gendlin is saying that the origin of your emotions about calling your mom is stored in your muscles. I think he's saying that when you have certain thoughts or parts of yourself that you have squashed out of consciousness with consistent suppression, these parts make themselves known through physical sensations, so it feels like it's in your body. And the best way to figure out what those feelings are is to be very attentive to your body, because that's the channel through which you're able to tentatively communicate with that part of yourself.

OR, it may not be that you did anything to suppress the thoughts, it may just be that the mind is structured in such a way that certain parts of the mind have no vocabulary with which to just inject a simple verbal thought into awareness. There's no reason a priori to assume that all parts of the mind have equal access to the phenological loop.

Maybe Gendlin's stuff is easier to swallow if you happen to already have this view of the conscious mind as the tip of the iceberg, with most of your beliefs and habits and thoughts being dominated by the vast but unreflective subconscious. If you get into meditation in any serious way, you can really consistently see that these unarticulated mental constructs are always lurking there, dominating behavior, pushing and pulling. To me, it's not woo at all, it's very concrete and actionable, but I understand that Gendlin's way of wording things may serve as a barrier to entry.

Comment author: ksvanhorn 09 April 2017 04:54:20PM 0 points [-]

I appreciate your explanation, and it makes sense to me. But I still can't find any hint in Gendlin's writing that he's speaking metaphorically.

Comment author: moridinamael 20 December 2016 03:14:11PM 12 points [-]

A common bucket error for me: Idea X is a potentially very important research idea that is, as far as I know, original to me. It would really suck to discover that this wasn't original to me. Thus, I don't want to find out if this is already in the literature.

This is a change from how I used to think about flinches: I used to be moralistic, and to feel disapproval when I noticed a flinch, and to assume the flinch had no positive purpose. I therefore used to try to just grit my teeth and think about the painful thing, without first "factoring" the "purposes" of the flinch, as I do now.

This is key. Any habit that involves "gritting your teeth" is not durable.

Also, Focusing should easily be part of the LW "required reading".

Comment author: ksvanhorn 16 January 2017 03:43:00PM 0 points [-]

I'm reading Gendlin's book Focusing and struggling with it -- it's hard for me to understand why you and Anna think so highly of this book. It's hard to get past all the mystic woo about knowledge "in the body"; Gendlin seems to think that anything not in the conscious mind is somehow stored/processed out there in the muscles and bones. Even taking that as metaphorical -- which Gendlin clearly does not -- I find his description of the process very unclear.

Comment author: Irgy 30 July 2015 05:02:10AM *  1 point [-]

To my view, the 1/36 is "obviously" the right answer, what's interesting is exactly how it all went wrong in the other case. I'm honestly not all that enlightened by the argument given here nor in the links. The important question is, how would I recognise this mistake easily in the future? The best I have for the moment is "don't blindly apply a proportion argument" and "be careful when dealing with infinite scenarios even when they're disguised as otherwise". I think the combination of the two was required here, the proportion argument failed because the maths which normally supports it couldn't be used without at some point colliding with the partly-hidden infinity in the problem setup.

I'd be interested in more development of how this relates to anthropic arguments. It does feel like it highlights some of the weaknesses in anthropic arguments. It seems to strongly undermine the doomsday argument in particular. My take on it is that it highlights the folly of the idea that population is endlessly exponentially growing. At some point that has to stop regardless of whether it has yet already, and as soon as you take that into account I suspect the maths behind the argument collapses.

Edit: Just another thought. I tried harder to understand your argument and I'm not convinced it's enough. Have you heard of ignorance priors? They're the prior you use, in fact the prior you need to use, to represent a state of no knowledge about a measurement other than an invariance property which identifies the type of measurement it is. So an ignorance prior for a position is constant, and for a scale is 1/x, and for a probability has been at least argued to be 1/x(1-x). These all have the property that their integral is infinite, but they work because as soon as you add some knowledge and apply Bayes rule the result becomes integrable. These are part of the foundations of Bayesian probability theory. So while I agree with the conclusion, I don't think the argument that the prior is unnormalisable is sufficient proof.

Comment author: ksvanhorn 05 August 2015 04:48:02PM *  1 point [-]

Actually, no, improper priors such as you suggest are not part of the foundations of Bayesian probability theory. It's only legitimate to use an improper prior if the result you get is the limit of the results you get from a sequence of progressively more diffuse priors that tend to the improper prior in the limit. The Marginalization Paradox is an example where just plugging in an improper prior without considering the limiting process leads to an apparent contradiction. My analysis (http://ksvanhorn.com/bayes/Papers/mp.pdf) is that the problem there ultimately stems from non-uniform convergence.

I've had some email discussions with Scott Aaronson, and my conclusion is that the Dice Room scenario really isn't an appropriate metaphor for the question of human extinction. There are no anthropic considerations in the Dice Room, and the existence of a larger population from which the kidnap victims are taken introduces complications that have no counterpart when discussing the human extinction scenario.

You could formalize the human extinction scenario with unrealistic parameters for growth and generational risk as follows:

  • Let n be the number of generations for which humanity survives.

  • The population in each generation is 10 times as large as the previous generation.

  • There is a risk 1/36 of extinction in each generation. Hence, P(n=N+1 | n >= n) = 1/36.

  • You are a randomly chosen individual from the entirety of all humans who will ever exist. Specifically, P(you belong to generation g) = 10^g / N, where N is the sum of 10^t for 1 <= t <= n.

Analyzing this problem, I get

P(extinction occurs in generation t | extinction no earlier than generation t) = 1/36

P(extinction occurs in generation t | you are in generation t) = about 9/10

That's a vast difference depending on whether or not we take into account anthropic considerations.

The Dice Room analogy would be if the madman first rolled the dice until he got snake-eyes, then went out and kidnapped a bunch of people, randomly divided them into n batches, each 10 times larger than the previous, and murdered the last batch. This is a different process than what is described in the book, and results in different answers.

Comment author: Slider 28 July 2015 10:13:14PM 3 points [-]

The madman murders only almost always. It is possible but vanishingly unlikely that he just never rolls snake eyes (or he runs outside of the total population with the growth so he can't get a full patch). Option 1 doesn't care whether the doom ultimately happens while option 2 assumes that the doom will happen.

The proper enlish version of option two would be "Given that the dice came up snake eyes and that you were kidnapped at some point what is the probabilty that it did so while you were kidnapped?". Notice also that this is independent off what dice readings result in doom. That is if the world is only saved on snake eyes the chance is still "only" 9/10.

Comment author: ksvanhorn 29 July 2015 06:32:39PM 0 points [-]

Note that

P(you are in batch t | murders batch t & you are kidnapped)

cannot be 9/10 for all t; in fact, this probability must go to 0 in the limit as t -> infinity, regardless of what prior you use.

Comment author: Jiro 29 July 2015 02:29:15PM *  6 points [-]

Go to a casino. Bet $1 on something with a 50% chance of winning. If you win, you have won $1; try again. If you lose, double your bet size (which means that winning will leave you having won $1 total over the sequence of doubled bets) and repeat.

One argument says that in the long run, you will come out a winner, because every bet you make is part of a sequence and at the end of that sequence, you are $1 richer. Another argument says that in the long run, you will only break even, because each bet has a 50% chance of winning and a 50% chance of losing the same amount of money.

Of course, the answer is that you can't increase your bet infinitely, and when you stop increasing your bet, the statistical loss at the point where you stop increasing your bet exactly makes up for the statistical win all the other times you finished the sequence and won $1.

Furthermore, if you could increase your bet infinitely, this problem wouldn't happen, but if you could increase your bet infinitely, the expectation isn't well defined, because you are trying to compute it for a non-converging infinite series.

All this problem is is the same idea applied to probability of death instead of expectation of win. If the madman ever runs out of people, the overall probability depends exactly on what the madman does when he runs out of people (since it's not as well defined as it is for bets). If the madman never runs out of people, the probability involves a non-converging infinite series and so is not well defined.

If this is a metaphor for extinction, then when the madman runs out of people, he keeps rolling the dice on the remaining people until it eventually comes up snake eyes, in which case the chance of extinction is 100%. On the other hand, they can last arbitrarily long given an arbitrarily small probability of extinction.

Comment author: ksvanhorn 29 July 2015 06:11:04PM 1 point [-]

An earlier version of my analysis (the previous blog post) looked at the case of finite n and found, as you suggest, that the possibility of running out of people to kidnap is an important consideration. You can choose the number of batches n to be so large that it is virtually certain a priori that the madman will eventually murder:

P(eventually murders) = 1 - epsilon for some small epsilon

However, it turns out that conditioning on the fact that you are kidnapped changes the probability dramatically:

P(eventually murders | you are kidnapped) = about 10/9 * 1/36

The reason for this is that there are about 9 times as many people in the final batch as in all other batches combined, so the fact that you are kidnapped is strong evidence that the madman is on his last batch of potential victims.

The Dice Room, Human Extinction, and Consistency of Bayesian Probability Theory

2 ksvanhorn 28 July 2015 04:27PM

I'm sure that many of you here have read Quantum Computing Since Democritus. In the chapter on the anthropic principle the author presents the Dice Room scenario as a metaphor for human extinction. The Dice Room scenario is this:

1. You are in a world with a very, very large population (potentially unbounded.)

2. There is a madman who kidnaps 10 people and puts them in a room.

3. The madman rolls two dice. If they come up snake eyes (both ones) then he murders everyone.

4. Otherwise he releases everyone, then goes out and kidnaps 10 times as many people as before, and returns to step 3. 

The question is this: if you are one of the people kidnapped at some point, what is your probability of dying? Assume you don't know how many rounds of kidnappings have preceded yours.

As a metaphor for human extinction, think of the population of this world as being all humans who ever have or ever may live, each batch of kidnap victims as a generation of humanity, and rolling snake eyes as an extinction event.

The book gives two arguments, which are both purported to be examples of Bayesian reasoning:

1. The "proximate risk" argument says that your probability of dying is just the prior probability that the madman rolls snake eyes for your batch of kidnap victims -- 1/36.

2. The "proportion murdered" argument says that about 9/10 of all people who ever go into the Dice Room die, so your probability of dying is about 9/10.

Obviously this is a problem. Different decompositions of a problem should give the same answer, as long as they're based on the same information.

I claim that the "proportion murdered" argument is wrong. Here's why. Let pi(t) be the prior probability that you are in batch t of kidnap victims. The proportion murdered argument relies on the property that pi(t) increases exponentially with t: pi(t+1) = 10 * pi(t). If the madman murders at step t, then your probability of being in batch t is

  pi(t) / SUM(u: 1 <= u <= t: pi(u))

and, if pi(u+1) = 10 * pi(u) for all u < t, then this does indeed work out to about 9/10. But the values pi(t) must sum to 1; thus they cannot increase indefinitely, and in fact it must be that pi(t) -> 0 as t -> infinity. This is where the "proportion murdered" argument falls apart.

For a more detailed analysis, take a look at


This forum has a lot of very smart people who would be well-qualified to comment on that analysis, and I would appreciate hearing your opinions.

Comment author: ksvanhorn 11 March 2014 12:10:46AM 4 points [-]

I'm not sure that "jack of all trades" is a helpful identity, given the known benefits of economic specialization. Remember the origin of that term: "Jack of all trades, and master of none." It's often more useful to be really, really good at one thing and trade for what you need in other areas.

It can often be useful to have a "T-shaped" expertise, though: some level of familiarity with a wide variety of topics, and deep expertise in one area. The cross bar of the T helps you when your existing expertise and skills are not enough -- you know enough to find someone who can help you, or to know what new skills / knowledge you need to pick up. (Or, perhaps more importantly, you know what you don't know.)

Predicting Organizational Behavior

4 ksvanhorn 21 September 2013 07:33PM

Can someone recommend a good introduction to the topic of organizational behavior? My interest is in descriptive rather than prescriptive models -- I'm interested in what is known about predicting the behavior of organizations, rather than guidance on what they should do to achieve their goals. This kind of prediction strikes me as something of substantial practical use, especially to business; being able to work out the plausible range of future actions of city hall, the state legislature, Congress, regulatory agencies, competitors in the marketplace, large customers, and important suppliers would be a valuable capability in making one's own plans.


Comment author: ksvanhorn 20 September 2013 04:26:41AM 1 point [-]

Do you know why this book is on the MIRI course list? What is the connection to Friendly AI?

Comment author: ksvanhorn 03 September 2013 07:12:11PM 0 points [-]

I've certainly found this to be a useful strategy when dealing with complicated problems in software development. Sometimes a problem is just too big, and I can't quite see how all the pieces need to fit together. If I allow myself to leave some important design problems unresolved while I work on the parts that I do understand well enough to write, I often find that the other pieces then fall into place straightforwardly.

View more: Next