Redwood Research
(Not an author, but Buck suggested I look at this)
I think there's a few reasons why it's not clear from these results whether the steganography results introduced would reduce safety in an untrusted monitoring control protocol like that in Greenblatt et al.:
- The untrusted model needs to reliably collude in order to defeat the blue-team because if it messes up once during the upfront evaluation period (30 problems), it loses. Having a 90% chance of communicating correctly to the monitor on each problem gives a 0.9^30 = 4% chance of passing the upfront eval period. (This is a lossy translation of the 90% success rate in Mathew et al. E.g. Greenblatt et al. targets a 1.4% overall positive rate after the upfront eval, while Mathew et al. calibrates to at least a 7% false positive rate; The suspiciousness scores in Greenblatt et al. come from the receiver itself.)
- From the above, winrate is quite sensitive to the reliability of collusion, and it's pretty unclear what the error-bars should be around the 90% number.
- The untrusted model in Grennblatt et al. not only has to implement the steganographic signal and complete the task but also has to implement a backdoor.
- It's a different distribution of tasks from the APPS backdoor setting.
So overall I think it's pretty unclear how well the steganography in Mathew et al. would compare to the while-loop signal that performed best in Greenblatt et al.
With appropriate collusion mitigations I think untrusted monitoring is an excellent control protocol so I'm glad to see work investigating more natural learned collusion capabilities and the effectiveness of countermeasures. I'd be excited to see evaluations of these steganographic strategies in the context of untrusted monitoring so that the results have an easier interpretation in terms of safety and usefulness.
I think that if they:
- Find a feature that is necessary for defection in all of the cases of defection in a diverse and realistic set of model organisms
- Locate that feature with very little optimization on the defection cases
I'd be fairly confident (>~80%) that it would catch any particular deployment-time defection attempt from an ASL-4 schemer. This would cut risk from the deployment by >5x when paired with compelling incrimination and a shutdown. This is a substantial risk reduction, and I might even buy this safety case if there weren't better options for this threat model (e.g. untrusted monitoring). My main concerns are:
- It seems unlikely we would get a feature that meets the above two criteria
- The feature might have too many false positives
- The possibility that the model organisms were sabotaging your eval by coordinating to route their defection attempts through a particular feature (this seems hard at ASL-4 though (but this claim would need an eval)).
This is really exciting to see not only as a way to understand better what people at Anthropic are thinking about how to make ASL-4 safety cases but also as a survey of how various safety agendas might play a role in practice!
Here are some thoughts about the details:
Their addendum contains measurements on refusals and harmlessness, though these aren't that meaningful and weren't advertised.
You seem to be talking primarily about Ilya, but it seems especially unclear why Jan is also leaving now.
I think this is a very important and neglected area! That its tractability is low is one of its central features, but progress on it now greatly aides in progress later by making these hard-to-meaure aims easier to measure.
The only way ChatGPT can control anything is by writing text, so figuring out that it should write the text that should appear in the image seems pretty straightforward. It only needs to rationalize why this would work.
I think the relevant notion of "being an agent" is whether we have reason to believe it generalizes like a consequentialist (e.g. its internal cognition considers possible actions and picks among them based on expected consequences and relies minimally on the imitative prior). This is upstream of the most important failure modes as described by Roger Grosse here.
I think Sora is still in the bottom left like LLMs, as it has only been trained to predict. Without further argument or evidence I would expect that it probably for the most part hasn't learned to simulate consequentialist cognition, similar to how LLMs haven't demonstrated this ability yet (e.g. fail to win a chess game in an easy but OOD situation).
I'll add another one to the list: "Human-level knowledge/human simulator"
Max Nadeau helped clarify some ways in which this framing introduced biases into my and others' models of ELK and scalable oversight. Knowledge is hard to define and our labels/supervision might be tamperable in ways that are not intuitively related to human difficulty.
Different measurements of human difficulty only correlate at about 0.05 to 0.3, suggesting that human difficulty might not be a very meaningful concept for AI oversight, or that our current datasets for experimenting with scalable oversight don't contain large enough gaps in difficulty to make meaningful measurements.
The general concern here is that your human auditors might not be perfect. I think in practice when making a safety case for a deployment, it would make sense to run a red-team/blue-team game with a human/AI red-team and your real auditors to see if your auditors are reliable.
I'm not sure how the proposed steganographic attack would work though. How do you ensure that your backdoored code will hash to XYZ if you can't see the backdoor opportunity until after you've decided on XYZ?