One thing that I do after social interactions, especially those which pertain to my work, is to go over all the updates my background processing is likely to make and to question them more explicitly.
This is helpful because I often notice that the updates I’m making aren’t related to reasons much at all. It’s more like “ah they kind of grimaced when I said that, so maybe I'm bad?” or like “they seemed just generally down on this approach, but wait are any of those reasons even new to me? Haven’t I already considered those and decided to do it anyway?” or “they seemed so aggressively pessimistic about my work, but did they even understand what I was saying?” or “they certainly spoke with a lot of authority, but why should I trust them on this, and do I even care about their opinion here?” Etc. A bunch of stuff which at first blush my social center is like “ah god, it’s all over, I’ve been an idiot this whole time” but with some second glancing it’s like “ah wait no, probably I had reasons for doing this work that withstand surface level pushback, let’s remember those again and see if they hold up” And often (always?) they do.
This did not come naturally to me; I’ve had to train myself into doing it. But it has helped a lot with this sort of problem, alongside the solutions you mention i.e. becoming more of a hermit and trying to surround myself by people engaged in more timeless thought.
There are a ton of objective thresholds in here. E.g., for bioweapon acquisition evals "we pre-registered an 80% average score in the uplifted group as indicating ASL-3 capabilities" and for bioweapon knowledge evals "we consider the threshold reached if a well-elicited model (proxying for an "uplifted novice") matches or exceeds expert performance on more than 80% of questions (27/33)" (which seems good!).
I am confused, though, why these are not listed in the RSP, which is extremely vague. E.g., the "detailed capability threshold" in the RSP is "the ability to significantly assist individuals or groups with basic STEM backgrounds in obtaining, producing, or deploying CBRN weapons," yet the exact threshold is left undefined since: "we are uncertain how to choose a specific threshold." I hope this implies that future RSPs will commit to more objective thresholds.
I don't think that most people, upon learning that Anthropic's justification was "other companies were already putting everyone's lives at risk, so our relative contribution to the omnicide was low" would then want to abstain from rioting. Common ethical intuitions are often more deontological than that, more like "it's not okay to risk extinction, period." That Anthropic aims to reduce the risk of omnicide on the margin is not, I suspect, the point people would focus on if they truly grokked the stakes; I think they'd overwhelmingly focus on the threat to their lives that all AGI companies (including Anthropic) are imposing.
I agree with a bunch of this post in spirit—that there are underlying patterns to alignment deserving of true name—although I disagree about… not the patterns you’re gesturing at, exactly, but more how you’re gesturing at them. Like, I agree there’s something important and real about “a chunk of the environment which looks like it’s been optimized for something,” and “a system which robustly makes the world look optimized for a certain objective, across many different contexts.” But I don't think the true names of alignment will be behaviorist (“as if” descriptions, based on observed transformations between inputs and output). I.e., whereas you describe it as one subtlety/open problem that this account doesn’t “talk directly about what concrete patterns or tell-tale signs make something look like it's been optimized for X,” my own sense is that this is more like the whole problem (and also not well characterized as a coherence problem). It’s hard for me to write down the entire intuition I have about this, but some thoughts:
By faithful and human-legible, I mean that the model’s reasoning is done in a way that is directly understandable by humans and accurately reflects the reasons for the model’s actions.
Curious why you say this, in particular the bit about “accurately reflects the reasons for the model’s actions.” How do you know that? (My impression is that this sort of judgment is often based on ~common sense/folk reasoning, ie, that we judge this in a similar way to how we might judge whether another person took sensical actions—was the reasoning internally consistent, does it seem predictive of the outcome, etc.? Which does seem like some evidence to me, although not enough to say that it accurately reflects what's happening. But perhaps I'm missing something here).
I purposefully use these terms vaguely since my concepts about them are in fact vague. E.g., when I say “alignment” I am referring to something roughly like “the AI wants what we want.” But what is “wanting,” and what does it mean for something far more powerful to conceptualize that wanting in a similar way, and what might wanting mean as a collective, and so on? All of these questions are very core to what it means for an AI system to be “aligned,” yet I don’t have satisfying or precise answers for any of them. So it seems more natural to me, at this stage of scientific understanding, to simply own that—not to speak more rigorously than is in fact warranted, not to pretend I know more than I in fact do.
The goal, of course, is to eventually understand minds well enough to be more precise. But before we get there, most precision will likely be misguided—formalizing the wrong thing, or missing the key relationships, or what have you. And I think this does more harm than good, as it causes us to collectively misplace where the remaining confusion lives, when locating our confusion is (imo) one of the major bottlenecks to solving alignment.
I’m not convinced that the “hard parts” of alignment are difficult in the standardly difficult, g-requiring way that e.g., a physics post-doc might possess. I do think it takes an unusual skillset, though, which is where most of the trouble lives. I.e., I think the pre-paradigmatic skillset requires unusually strong epistemics (because you often need to track for yourself what makes sense), ~creativity (the ability to synthesize new concepts, to generate genuinely novel hypotheses/ideas), good ability to traverse levels of abstraction (connecting details to large level structure, this is especially important for the alignment problem), not being efficient market pilled (you have to believe that more is possible in order to aim for it), noticing confusion, and probably a lot more that I’m failing to name here.
Most importantly, though, I think it requires quite a lot of willingness to remain confused. Many scientists who accomplished great things (Darwin, Einstein) didn’t have publishable results on their main inquiry for years. Einstein, for instance, talks about wandering off for weeks in a state of “psychic tension” in his youth, it took ~ten years to go from his first inkling of relativity to special relativity, and he nearly gave up at many points (including the week before he figured it out). Figuring out knowledge at the edge of human understanding can just be… really fucking brutal. I feel like this is largely forgotten, or ignored, or just not understood. Partially that's because in retrospect everything looks obvious, so it doesn’t seem like it could have been that hard, but partially it's because almost no one tries to do this sort of work, so there aren't societal structures erected around it, and hence little collective understanding of what it's like.
Anyway, I suspect there are really strong selection pressures for who ends up doing this sort of thing, since a lot needs to go right: smart enough, creative enough, strong epistemics, independent, willing to spend years without legible output, exceptionally driven, and so on. Indeed, the last point seems important to me—many great scientists are obsessed. Spend night and day on it, it’s in their shower thoughts, can’t put it down kind of obsessed. And I suspect this sort of has to be true because something has to motivate them to go against every conceivable pressure (social, financial, psychological) and pursue the strange meaning anyway.
I don’t think the EA pipeline is much selecting for pre-paradigmatic scientists, but I don’t think lack of trying to get physicists to work on alignment is really the bottleneck either. Mostly I think selection effects are very strong, e.g., the Sequences was, imo, one of the more effective recruiting strategies for alignment. I don’t really know what to recommend here, but I think I would anti-recommend putting all the physics post-docs from good universities in a room in the hope that they make progress. Requesting that the world write another book as good as the Sequences is a... big ask, although to the extent it’s possible I expect it’ll go much further in drawing people out who will self select into this rather unusual "job."
My high-level skepticism of their approach is A) I don't buy that it's possible yet to know how dangerous models are, nor that it is likely to become possible in time to make reasonable decisions, and B) I don't buy that Anthropic would actually pause, except under a pretty narrow set of conditions which seem unlikely to occur.
As to the first point: Anthropic's strategy seems to involve Anthropic somehow knowing when to pause, yet as far as I can tell, they don't actually know how they'll know that. Their scaling policy does not list the tests they'll run, nor the evidence that would cause them to update, just that somehow they will. But how? Behavioral evaluations aren't enough, imo, since we often don't know how to update from behavior alone—maybe the model inserted the vulnerability into the code "on purpose," or maybe it was an honest mistake; maybe the model can do this dangerous task robustly, or maybe it just got lucky this time, or we phrased the prompt wrong, or any number of other things. And these sorts of problems seem likely to get harder with scale, i.e., insofar as it matters to know whether models are dangerous.
This is just one approach for assessing the risk, but imo no currently-possible assessment results can suggest "we're reasonably sure this is safe," nor come remotely close to that, for the same basic reason: we lack a fundamental understanding of AI. Such that ultimately, I expect Anthropic's decisions will in fact mostly hinge on the intuitions of their employees. But this is not a robust risk management framework—vibes are not substitutes for real measurement, no matter how well-intentioned those vibes may be.
Also, all else equal I think you should expect incentives might bias decisions the more interpretive-leeway staff have in assessing the evidence—and here, I think the interpretation consists largely of guesswork, and the incentives for employees to conclude the models are safe seem strong. For instance, Anthropic employees all have loads of equity—including those tasked with evaluating the risks!—and a non-trivial pause, i.e. one lasting months or years, could be a death sentence for the company.
But in any case, if one buys the narrative that it's good for Anthropic to exist roughly however much absolute harm they cause—as long as relatively speaking, they still view themselves as improving things marginally more than the competition—then it is extremely easy to justify decisions to keep scaling. All it requires is for Anthropic staff to conclude they are likely to make better decisions than e.g., OpenAI, which I think is the sort of conclusion that comes pretty naturally to humans, whatever the evidence.
This sort of logic is even made explicit in their scaling policy:
Personally, I am very skeptical that Anthropic will in fact end up deciding to pause for any non-trivial amount of time. The only scenario where I can really imagine this happening is if they somehow find incontrovertible evidence of extreme danger—i.e., evidence which not only convinces them, but also their investors, the rest of the world, etc.—such that it would become politically or legally impossible for any of their competitors to keep pushing ahead either.
But given how hesitant they seem to commit to any red lines about this now, and how messy and subjective the interpretation of the evidence is, and how much inference is required to e.g. go from the fact that "some model can do some AI R&D task" to "it may soon be able to recursively self-improve," I feel really quite skeptical that Anthropic is likely to encounter the sort of knockdown, beyond-a-reasonable-doubt evidence of disaster that I expect would be needed to convince them to pause.
I do think Anthropic staff probably care more about the risk than the staff of other frontier AI companies, but I just don't buy that this caring does much. Partly because simply caring is not a substitute for actual science, and partly because I think it is easy for even otherwise-virtuous people to rationalize things when the stakes and incentives are this extreme.
Anthropic's strategy seems to me to involve a lot of magical thinking—a lot of, "with proper effort, we'll surely surely figure out what to do when the time comes." But I think it's on them to demonstrate to the people whose lives they are gambling with, how exactly they intend to cross this gap, and in my view they sure do not seem to be succeeding at that.