Daniel Murfet

Wiki Contributions

Comments

Sorted by

Re: the SLT dogma.

For those interested, a continuous version of the padding argument is used in Theorem 4.1 of Clift-Murfet-Wallbridge to show that the learning coefficient is a lower bound on the Kolmogorov complexity (in a sense) in the setting of noisy Turing machines. Just take the synthesis problem to be given by a TM's input-output map in that theorem. The result is treated in a more detailed way in Waring's thesis (Proposition 4.19). Noisy TMs are of course not neural networks, but they are a place where the link between the learning coefficient in SLT and algorithmic information theory has already been made precise.

For what it's worth, as explained in simple versus short, I don't actually think the local learning coefficient is algorithmic complexity (in the sense of program length) in neural networks, only that it is a lower bound. So I don't really see the LLC as a useful "approximation" of the algorithmic complexity.

For those wanting to read more about the padding argument in the classical setting, Hutter-Catt-Quarel "An Introduction to Universal Artificial Intelligence" has a nice detailed treatment.

Typo, I think you meant singularity theory :p

Modern mathematics is less about solving problems within established frameworks and more about designing entirely new games with their own rules. While school mathematics teaches us to be skilled players of pre-existing mathematical games, research mathematics requires us to be game designers, crafting rule systems that lead to interesting and profound consequences

 

I don't think so. This probably describes the kind of mathematics you aspire to do, but still the bulk of modern research in mathematics is in fact about solving problems within established frameworks and usually such research doesn't require us to "be game designers". Some of us are of course drawn to the kinds of frontiers where such work is necessary, and that's great, but I think this description undervalues the within-paradigm work that is the bulk of what is going on.

It might be worth knowing that some countries are participating in the "network" without having formal AI safety institutes

I hadn't seen that Wattenberg-Viegas paper before, nice.

Yeah actually Alexander and I talked about that briefly this morning. I agree that the crux is "does this basic kind of thing work" and given that the answer appears to be "yes" we can confidently expect scale (in both pre-training and inference compute) to deliver significant gains.

I'd love to understand better how the RL training for CoT changes the representations learned during pre-training. 

My observation from the inside is that size and bureaucracy in Universities has something to do with what you're talking about, but more to do with a kind of "organisational overfitting" where small variations of the organisation's experience that included negative outcomes are responded to by internal process that necessitates headcount (aligning the incentives for response with what you're talking about).

I think self-repair might have lower free energy, in the sense that if you had two configurations of the weights, which "compute the same thing" but one of them has self-repair for a given behaviour and one doesn't, then the one with self-repair will have lower free energy (which is just a way of saying that if you integrate the Bayesian posterior in a neighbourhood of both, the one with self-repair gives you a higher number, i.e. its preferred).

That intuition is based on some understanding of what controls the asymptotic (in the dataset size) behaviour of the free energy (which is -log(integral of posterior over region)) and the example in that post. But to be clear it's just intuition. It should be possible to empirically check this somehow but it hasn't been done.

Basically the argument is self-repair => robustness of behaviour to small variations in the weights => low local learning coefficient => low free energy => preferred

I think by "specifically" you might be asking for a mechanism which causes the self-repair to develop? I have no idea.

It's a fascinating phenomenon. If I had to bet I would say it isn't a coping mechanism but rather a particular manifestation of a deeper inductive bias of the learning process.

In terms of more subtle predictions. In the Berkeley Primer in mid-2023, based on elementary manipulations of the free energy formula, I predicted we should see phase transitions / developmental stages where the loss stays relatively constant but the LLC (model complexity) decreases.

We noticed one such stage in the language models, and two in the linear regression transformers in the developmental landscape paper. We only partially understood them there, but we've seen more behaviour like this in the upcoming work I mentioned in my other post, and we feel more comfortable now linking it to phenomena like "pruning" in developmental neuroscience. This suggests some interesting connections with loss of plasticity (i.e. we see many components have LLC curves that go up, then come down, and one would predict after this decrease the components are more resistent to being changed by further training).

These are potentially consequential changes in model computation that are (in these examples) arguably not noticeable in the loss curve, and it's not obvious to me how you would be confident to notice this from other metrics you would have thought to track (in each case they might correspond with something, like say magnitude of layer norm weights, but it's unclear to me out of all the thousands of things you could measure why you would a priori associate any one such signal with a change in model computation unless you knew it was linked to the LLC curve). Things like the FIM trace or Hessian trace might also reflect the change. However in the second such stage in the linear regression transformer (LR4) this seems not to be the case.

Load More