Followup to: The Savage theorem and the Ellsberg paradox
In the previous post, I presented a simple version of Savage's theorem, and I introduced the Ellsberg paradox. At the end of the post, I mentioned a strong Bayesian thesis, which can be summarised: "There is always a price to pay for leaving the Bayesian Way."1 But not always, it turns out. I claimed that there was a method that is Ellsberg-paradoxical, therefore non-Bayesian, but can't be money-pumped (or "Dutch booked"). I will present the method in this post.
I'm afraid this is another long post. There's a short summary of the method at the very end, if you want to skip the jibba jabba... (read 4043 more words →)
If there is nothing wrong with having a state variable, then sure, I can give a rule for initialising it, and call it "objective". It is "objective" in that it looks like the sort of thing that Bayesians call "objective" priors.
Eg. you have an objective prior in mind for the Ellsberg urn, presumably uniform over the 61 configurations, perhaps based on max entropy. What if instead there had been one draw (with replacement) from the urn, and it had been green? You can't apply max entropy now. That's ok: apply max entropy "retroactively" and run the usual update process to get your initial probabilities.
So we could normally start the state variable... (read more)