oceaninthemiddleofanisland
oceaninthemiddleofanisland has not written any posts yet.

oceaninthemiddleofanisland has not written any posts yet.

How far away is this from being implementable?
This probably won't add too much to the discussion but I'm curious to see whether other people relate to this or have a similar process. I was kind of stunned when I heard from friends who got into composing about how difficult it is to figure out a melody and then write a complete piano piece because to me, whenever I open up Sibelius or Dorico (and more recently Ableton), internally it seems like I'm just listening to what I wrote so far, 'hearing' a possible continuation lasting a few bars, and then quickly trying to transcribe it before I forget it, or if I really want to be precise then just... (read 420 more words →)
So I've figured this out. Kinda. If you choose 'custom' then it will give you Griffin, but if you choose one of the conventional prompts and then edit it, you can get around it. So damn annoying.
Wow, I didn't realise I could get this angry about something so esoteric.
I'm beginning to think AID has changed what the "Dragon" model is without telling us for cost reasons, I've had kind of the same experience with big lapses in storytelling that didn't occur as often before. Or maybe it's randomly switching based on server load? I can kind of understand it if that's the case but the lack of transparency is annoying. I remember accidentally using the Griffin model for a day when my subscription ran out and not realising because its Indonesian was still quite good...
Somehow the more obvious explanation didn't occur to me until now, but check the settings, you might be using the Griffin model not the Dragon model. You have to change it manually even after you get the subscription. I have a window open specifically for poetry prompts (using the Oracle hack), I said "Write a long poem in Russian. Make sure the lines are long, vivid, rich, and full of description and life. It should be a love poem addressed to coffee. It should be 15 lines long" followed with "The Oracle, which is a native in Russian, writes: 1 Ой,". That just gave me annoying stuff like "Oh, coffee, how I... (read more)
If it's a BPE encoding thing (which seems unlikely to me given that it was able to produce Japanese and Chinese characters just fine), then the implication is OpenAI carried over their encoding from GPT-2 where all foreign language documents were removed from the dataset ... I would have trouble believing their team would have overlooked something that huge. This is doubly bizarre given that Russian is the 5/6th most common language in the dataset. You may want to try prompting it with coherent Russian text, my best guess is that in the dataset, whenever somebody says "He said in Russian:", what usually follows is poor quality (for instance I see this in bad fanfiction where authors use machine translation services to add 'authenticity'), and that GPT-3 is interpreting this as a signal that it should produce bad Russian. I will give this a try and see if I encounter the same issue.
That's a visualisation I made which I haven't posted anywhere else except under the r/ML thread collecting entries for GPT-3 demos, since I couldn't figure out which subreddit to post it in.
Two thoughts, one of them significantly longer than the other since it's what I'm most excited about.
(1) It might be the case that the tasks showing an asymptotic trend will resemble the trend for arithmetic – a qualitative breakthrough was needed, which was out of reach at the current model size but became possible at a certain threshold.
(2) For translation, I can definitely say that scaling is doing something. When you narrowly define translation as BLEU score ("does this one generated sentence match the reference sentence? by how much?"), then I agree that the benefits of scaling are marginal – for individual sentences, by that specific metric.
But here's the thing, GPT-3... (read 1809 more words →)
'Predicting random text on the internet better than a human' already qualifies it as superhuman, as dirichlet-to-neumann pointed out. If you look at any given text, there's a given ratio of cognitive work needed to produce the text, per word-count. "Superhuman" only requires asking it to replicate the work of multiple people collaborating together, or processes which need a lot of human labour like putting together a business strategy or writing a paper. Assuming it's mediocre in some aspects, the clearest advantage GPT-6 would have would be an interdisciplinary one - pooling together domain knowledge from disparate areas to produce valuable new insights.