Engineer at METR.
Previously: Vivek Hebbar's team at MIRI → Adrià Garriga-Alonso on various empirical alignment projects → METR.
I have signed no contracts or agreements whose existence I cannot mention.
It's likely possible to engineer away mutations just by checking. ECC memory already has an error rate nine orders of magnitude better than human DNA, and with better error correction you could probably get the error rate low enough that less than one error happens in the expected number of nanobots that will ever exist. ECC is not the kind of checking for which the checking process can be disabled, as the memory module always processes raw bits into error-corrected bits, which fails unless it matches some checksum which can be made astronomically unlikely to happen in a mutation.
I was expecting some math. Maybe something about the expected amount of work you can get out of an AI before it coups you, if you assume the number of actions required to coup is n, the trusted monitor has false positive rate p, etc?
I'm pretty skeptical of this because the analogy seems superficial. Thermodynamics says useful things about abstractions like "work" because we have the laws of thermodynamics. What are the analogous laws for cognitive work / optimization power? It's not clear to me that it can be quantified such that it is easily accounted for:
It is also not clear what distinguishes LLM weights from the weights of a model trained on random labels from a cryptographic PRNG. Since the labels are not truly random, they have the same amount of optimization done to them, but since CSPRNGs can't be broken just by training LLMs on them, the latter model is totally useless while the former is potentially transformative.
My guess is this way of looking at things will be like memetics in relation to genetics: likely to spawn one or two useful expressions like "memetically fit", but due to the inherent lack of structure in memes compared to DNA life, not a real field compared to other ways of measuring AIs and their effects (scaling laws? SLT?). Hope I'm wrong.
Maybe we'll see the Go version of Leela give nine stones to pros soon? Or 20 stones to normal players?
Whether or not it would happen by default, this would be the single most useful LW feature for me. I'm often really unsure whether a post will get enough attention to be worth making it a longform, and sometimes even post shortforms like "comment if you want this to be a longform".
I thought it would be linearity of expectation.
One day, the North Wind and the Sun argued about which of them was the strongest. Abadar, the god of commerce and civilization, stopped to observe their dispute. “Why don’t we settle this fairly?” he suggested. “Let us see who can compel that traveler on the road below to remove his cloak.”
The North Wind agreed, and with a mighty gust, he began his effort. The man, feeling the bitter chill, clutched his cloak tightly around him and even pulled it over his head to protect himself from the relentless wind. After a time, the North Wind gave up, frustrated.
Then the Sun tried his turn. Beaming warmly from the heavens, the Sun caused the air to grow pleasant and balmy. The man, feeling the growing heat, loosened his cloak and eventually took it off in the heat, resting under the shade of a tree. The Sun began to declare victory, but as soon as he turned away, the man put on the cloak again.
The god of commerce then approached the traveler and bought the cloak for five gold coins. The traveler tucked the money away and continued on his way, unbothered by either wind or heat. He soon bought a new cloak and invested the remainder in an index fund. The returns were steady, and in time the man prospered far beyond the value of his simple cloak, while the cloak was Abadar's permanently.
Commerce, when conducted wisely, can accomplish what neither force nor gentle persuasion alone can achieve, and with minimal deadweight loss.
The thought experiment is not about the idea that your VNM utility could theoretically be doubled, but instead about rejecting diminishing returns to actual matter and energy in the universe. SBF said he would flip with a 51% of doubling the universe's size (or creating a duplicate universe) and 49% of destroying the current universe. Taking this bet requires a stronger commitment to utilitarianism than most people are comfortable with; your utility needs to be linear in matter and energy. You must be the kind of person that would take a 0.001% chance of colonizing the universe over a 100% chance of colonizing merely a thousand galaxies. SBF also said he would flip repeatedly, indicating that he didn't believe in any sort of bound to utility.
This is not necessarily crazy-- I think Nate Soares has a similar belief-- but it's philosophically fraught. You need to contend with the unbounded utility paradoxes, and also philosophical issues: what if consciousness is information patterns that become redundant when duplicated, so that only the first universe "counts" morally?
For context, I just trialed at METR and talked to various people there, but this take is my own.
I think further development of evals is likely to either get effective evals (informal upper bound on the future probability of catastrophe) or exciting negative results ("models do not follow reliable scaling laws, so AI development should be accordingly more cautious").
The way to do this is just to examine models and fit scaling laws for catastrophe propensity, or various precursors thereof. Scaling laws would be fit to elicitation quality as well as things like pretraining compute, RL compute, and thinking time.
It is NOT KNOWN what world we are in (worst-case assumptions would put us in 2 though I'm optimistic we're closer to 1 in practice), and determining this is just a matter of data collection. If our evals are still not good enough but we don't seem to be in World 2 either, there are endless of tricks to add that make evals more thorough, some of which are already being used. Like evaluating models with limited human assistance, or dividing tasks into subtasks and sampling a huge number of tries for each.
I was at the NeurIPS many-shot jailbreaking poster today and heard that defenses only shift the attack success curve downwards, rather than changing the power law exponent. How does the power law exponent of BoN jailbreaking compare to many-shot, and are there defenses that change the power law exponent here?