Yeah, living in a group house was important for our mental well-being as well, especially during the pandemic and parental leaves. I think the benefits of the social environment decreased somewhat because we were often occupied with the kids and had less time to socialize. It was still pretty good though - if Deep End was close enough to schools we like, we would have probably stayed and tried to make it work (though this would likely involve taking over more of the house over time). Our new place contributes to mental well-being by being much closer to nature (while still a reasonable bike commute from the office).
I would potentially be interested, if we knew the other people well. I find that, as a parent, I'm less willing to take risks by moving in with people I don't know that well, because the stress and uncertainty associated with things not working out are more costly.
Space requirements would likely be the biggest difficulty though, as you pointed out. A family with 2 kids probably needs at least 3 rooms, so two such families together would need a 6 bedroom house. This is hard to find, especially combined with other constraints like proximity to schools, commute distances, etc. It's a lot easier to live near other families than sharing a living space.
I really enjoyed this sequence, it provides useful guidance on how to combine different sources of knowledge and intuitions to reason about future AI systems. Great resource on how to think about alignment for an ML audience.
I think this is still one of the most comprehensive and clear resources on counterpoints to x-risk arguments. I have referred to this post and pointed people to a number of times. The most useful parts of the post for me were the outline of the basic x-risk case and section A on counterarguments to goal-directedness (this was particularly helpful for my thinking about threat models and understanding agency).
I still endorse the breakdown of "sharp left turn" claims in this post. Writing this helped me understand the threat model better (or at all) and make it a bit more concrete.
This post could be improved by explicitly relating the claims to the "consensus" threat model summarized in Clarifying AI X-risk. Overall, SLT seems like a special case of that threat model, which makes a subset of the SLT claims:
I continue to endorse this categorization of threat models and the consensus threat model. I often refer people to this post and use the "SG + GMG → MAPS" framing in my alignment overview talks. I remain uncertain about the likelihood of the deceptive alignment part of the threat model (in particular the requisite level of goal-directedness) arising in the LLM paradigm, relative to other mechanisms for AI risk.
In terms of adding new threat models to the categorization, the main one that comes to mind is Deep Deceptiveness (let's call it Soares2), whi...
I'm glad I ran this survey, and I expect the overall agreement distribution probably still holds for the current GDM alignment team (or may have shifted somewhat in the direction of disagreement), though I haven't rerun the survey so I don't really know. Looking back at the "possible implications for our work" section, we are working on basically all of these things.
Thoughts on some of the cruxes in the post based on last year's developments:
I agree that a possible downside of talking about capabilities is that people might assume they are uncorrelated and we can choose not to create them. It does seem relatively easy to argue that deception capabilities arise as a side effect of building language models that are useful to humans and good at modeling the world, as we are already seeing with examples of deception / manipulation by Bing etc.
I think the people who think we can avoid building systems that are good at deception often don't buy the idea of instrumental convergence either (e.g. Yann LeCun), so I'm not sure that arguing for correlated capabilities in terms of intelligence would have an advantage.
The issue with being informal is that it's hard to tell whether you are right. You use words like "motivations" without defining what you mean, and this makes your statements vague enough that it's not clear whether or how they are in tension with other claims. (E.g. what I have read so far doesn't seems to rule out that shards can be modeled as contextually activated subagents with utility functions.)
An upside of formalism is that you can tell when it's wrong, and thus it can help make our thinking more precise even if it makes assumptions that may ...
Thanks Daniel, this is a great summary. I agree that internal representation of the reward function is not load-bearing for the claim. The weak form of representation that you mentioned is what I was trying to point at. I will rephrase the sentence to clarify this, e.g. something like "We assume that the agent learns a goal during the training process: some form of implicit internal representation of desired state features or concepts".
Thanks Daniel for the detailed response (which I agree with), and thanks Alex for the helpful clarification.
I agree that the training-compatible set is not predictive for how the neural network generalizes (at least under the "strong distributional shift" assumption in this post where the test set is disjoint from the training set, which I think could be weakened in future work). The point of this post is that even though you can't generally predict behavior in new situations based on the training-compatible set alone, you can still predict power-seeking t...
The internal representations assumption was meant to be pretty broad, I didn't mean that the network is explicitly representing a scalar reward function over observations or anything like that - e.g. these can be implicit representations of state features I think this would also include the kind of representations you are assuming in the maze-solving post, e.g. cheese shards / circuits.
Thanks Alex! Your original comment didn't read as ill-intended to me, though I wish that you'd just messaged me directly. I could have easily missed your comment in this thread - I only saw it because you linked the thread in the comments on my post.
Your suggested rephrase helps to clarify how you think about the implications of the paper, but I'm looking for something shorter and more high-level to include in my talk. I'm thinking of using this summary, which is based on a sentence from the paper's intro: "There are theoretical results showing that many d...
Sorry about the cite in my "paradigms of alignment" talk, I didn't mean to misrepresent your work. I was going for a high-level one-sentence summary of the result and I did not phrase it carefully. I'm open to suggestions on how to phrase this differently when I next give this talk.
Similarly to Steven, I usually cite your power-seeking papers to support a high-level statement that "instrumental convergence is a thing" for ML audiences, and I find they are a valuable outreach tool. For example, last year I pointed David Silver to the optimal policies paper ...
Thanks for your patient and high-quality engagement here, Vika! I hope my original comment doesn't read as a passive-aggressive swipe at you. (I consciously tried to optimize it to not be that.) I wanted to give concrete examples so that Wei_Dai could understand what was generating my feelings.
I'm open to suggestions on how to phrase this differently when I next give this talk.
It's a tough question to say how to apply the retargetablity result to draw practical conclusions about trained policies. Part of this is because I don't know if trained policies ten...
Here is my guess on how shard theory would affect the argument in this post:
Great post! I especially enjoyed the intuitive visualizations for how the heavy-tailed distributions affect the degree of overoptimization of X.
As a possibly interesting connection, your set of criteria for an alignment plan can also be thought of as criteria for selecting a model specification that approximates the ideal specification well, especially trying to ensure that the approximation error is light-tailed.
Thanks Alex for the detailed feedback! I agree that learning a goal from the training-compatible set is a strong assumption that might not hold.
This post assumes a standard RL setup and is not intended to apply to LLMs (it's possible some version of this result may hold for fine-tuned LLMs, but that's outside the scope of this post). I can update the post to explicitly clarify this, though I was not expecting anyone to assume that this work applies to LLMs given that the post explicitly assumes standard RL and does not mention LLMs at all.
I agr...
We expect that an aligned (blue-cloud) model would have an incentive to preserve its goals, though it would need some help from us to generalize them correctly to avoid becoming a misaligned (red-cloud) model. We talk about this in more detail in Refining the Sharp Left Turn (part 2).
This post provides a maximally clear and simple explanation of a complex alignment scheme. I read the original "learning the prior" post a few times but found it hard to follow. I only understood how the imitative generalization scheme works after reading this post (the examples and diagrams and clear structure helped a lot).
This post helped me understand the motivation for the Finite Factored Sets work, which I was confused about for a while. The framing of agency as time travel is a great intuition pump.
I like this research agenda because it provides a rigorous framing for thinking about inductive biases for agency and gives detailed and actionable advice for making progress on this problem. I think this is one of the most useful research directions in alignment foundations since it is directly applicable to ML-based AI systems.
It's great to hear that you have updated away from ambitious value learning towards corrigibility-like targets. It sounds like you now find it plausible that corrigibility will be a natural concept in the AI's ontology, despite it being incompatible with expected utility maximization. Does this mean that you expect we will be able to build advanced AI that doesn't become an expected utility maximizer?
I'm also curious how optimistic you are about the interpretability field being able to solve the empirical side of the abstraction problem in the next 5-10 ye...
Bah! :D It's sad to hear he's updated away from ambitions value learning towards corrigiblity-like targets. Eliezer's second-hand argument sounds circular to me; suppose that corrigibility as we'd recognize it isn't a natural abstraction - then generic AIs wouldn't use it to align child agents (instead doing something like value learning, or something even more direct), and so there wouldn't be a bunch of human-independent examples, so it wouldn't show up as a natural abstraction to those AIs.
I would consider goal generalization as a component of goal preservation, and I agree this is a significant challenge for this plan. If the model is sufficiently aligned to the goal of being helpful to humans, then I would expect it would want to get feedback about how to generalize the goals correctly when it encounters ontological shifts.
Too bad that my list of AI safety resources didn't make it into the survey - would be good to know to what extent it would be useful to keep maintaining it. Will you be running future iterations of this survey?
I agree that a sudden gain in capabilities can make a simulated agent undergo a sharp left turn (coming up with more effective takeover plans is a great example). My original question was about whether the simulator itself could undergo a sharp left turn. My current understanding is that a pure simulator would not become misaligned if its capabilities suddenly increase because it remains myopic, so we only have to worry about a sharp left turn for simulated agents rather than the simulator itself. Of course, in practice, language models are often fine-tune...
I would say the primary disagreement is epistemic - I think most of us would assign a low probability to a pivotal act defined as "a discrete action by a small group of people that flips the gameboard" being necessary. We also disagree on a normative level with the pivotal act framing, e.g. for reasons described in Critch's post on this topic.
Thanks Richard for this post, it was very helpful to read! Some quick comments:
Thank you for the insightful post. What do you think are the implications of the simulator framing for alignment threat models? You claim that a simulator does not exhibit instrumental convergence, which seems to imply that the simulator would not seek power or undergo a sharp left turn. The simulated agents could exhibit power-seeking behavior or rapidly generalizing capabilities or try to break out of the simulation, but this seems less concerning than the top-level model having these properties, and we might develop alignment techniques specifically tar...
I would expect that the way Ought (or any other alignment team) influences the AGI-building org is by influencing the alignment team within that org, which would in turn try to influence the leadership of the org. I think the latter step in this chain is the bottleneck - across-organization influence between alignment teams is easier than within-organization influence. So if we estimate that Ought can influence other alignment teams with 50% probability, and the DM / OpenAI / etc alignment team can influence the corresponding org with 20% probability, then...
Thanks Thomas for the helpful overview post! Great to hear that you found the AGI ruin opinions survey useful.
I agree with Rohin's summary of what we're working on. I would add "understanding / distilling threat models" to the list, e.g. "refining the sharp left turn" and "will capabilities generalize more".
Some corrections for your overall description of the DM alignment team:
This post resonates with me on a personal level, since my mother was really into mountain climbing in her younger years. She quit after seeing a friend die in front of her (another young woman who broke her neck against an opposing rock face in an unlucky fall). It seems likely I wouldn't be here otherwise. Happy to report that she is still enjoying safer mountain activities 50 years later.
Correct. I think that doing internal outreach to build an alignment-aware company culture and building relationships with key decision-makers can go a long way. I don't think it's possible to have complete binding power over capabilities projects anyway, since the people who want to run the project could in principle leave and start their own org.
Thanks! For those interested in conducting similar surveys, here is a version of the spreadsheet you can copy (by request elsewhere in the comments).
Here is a spreadsheet you can copy. This one has a column for each person - if you want to sort the rows by agreement, you need to do it manually after people enter their ratings. I think it's possible to automate this but I was too lazy.
Thanks, glad you found the post useful!
Maintaining uncertainty over the goal allows the system to model the set of goals that are consistent with the training data, notice when they disagree with each other out of distribution, and resolve that disagreement in some way (e.g. by deferring to a human).
Ah, I think you intended level 6 as an OR of learning from imitation / imagined experience, while I interpreted it as an AND. I agree that humans learn from imitation on a regular basis (e.g. at school). In my version of the hierarchy, learning from imitation and imagined experience would be different levels (e.g. level 6 and 7) because the latter seems a lot harder. In your decision theory example, I think a lot more people would be able to do the imitation part than the imagined experience part.
I think some humans are at level 6 some of the time (see Humans Who Are Not Concentrating Are Not General Intelligences). I would expect that learning cognitive algorithms from imagined experience is pretty hard for many humans (e.g. examples in the Astral Codex post about conditional hypotheticals). But maybe I have a different interpretation of Level 6 than what you had in mind?
This is an interesting hierarchy! I'm wondering how to classify humans and various current ML systems along this spectrum. My quick take is that most humans are at Levels 4-5, AlphaZero is at level 5, and GPT-3 is at level 4 with the right prompting. Curious if you have specific ML examples in mind for these levels.
Makes sense, thanks. I think the current version of the list is not a significant infohazard since the examples are well-known, but I agree it's good to be cautious. (I tweeted about it to try to get more examples, but it didn't get much uptake, happy to delete the tweet if you prefer.) Focusing on outreach to people who care about AI risk seems like a good idea, maybe it could be useful to nudge researchers who don't work on AI safety because of long timelines to start working on it.
Thanks Gunnar, those sound like reasonable guidelines!
- The common space was still usable by other housemates, but it felt a bit cramped, and I felt more internal pressure to keep it tidy for others to use (while in my own space I feel more comfortable leaving it messy for longer). Our housemates were very tolerant of having kid stuff everywhere, but it still seemed suboptimal.
- The fridge, laundry area and outdoor garbage bins were the most overloaded in our case, while the shed and attic were sufficiently spacious and less in demand that it wasn't an i
... (read more)