I've read many times about an experiment: take a 2-particle system and measure that it has a spin of 0. This tells us that the particles have opposite spin. Now, take the particles far away from each other and measure one. If you measure spin up, for example, you now know the other particle has spin down.
Why would anybody be surprised by this?
Let's imagine a similar classical experiment that uses literal spin. Take a system of two gyroscopes, each spinning at the same fixed speed, each in it's own sealed box. They can be powered or whatever so they stay spinning for the duration. Stack the two boxes ("entangling" their spin), and measure 0 spin to confirm that the gyroscopes are in fact spinning in opposite directions (some helicopters use this principle for stabilization on the y-axis instead of a tail propeller). Now, send the boxes far apart and measure one of them using the right hand rule. If it turns out to have spin up, the other will intuitively turn out to have spin down. But nobody will be surprised by this because we knew from the beginning that the pair was spinning in opposite directions; we just didn't know which was which before measuring one of them.
------------------------
Update: 2020Apr24
Thanks for all the comments, explanations, and links! I'm not ignoring them, just trying to find time between work and family responsibilities to digest and understand them before I ask my follow-up questions. I appreciate your patience!
The difference is that spin is a quantum mechanical concept, and this result becomes surprising in light of other things we know about quantum mechanics. Specifically, in quantum mechanics, it's not just that we don't know a particle's properties (like spin) before we measure them, it's that the particle has both properties, it has both spin up and spin down, until we measure it. We know this from things like the double slit experiment, where a single particle goes through two different slits at the same time and then interferes with itself. So when we have these two particles whose spins sum to 0, and we move them far away, and two observers measure their spin at the same time (so that the observers are outside of each others light cones), how do the particles coordinate so that their spins still sum to 0? They both had both spins when they were together, they didn't pick individual spins until the measurement occurred, and yet they still somehow coordinated to have opposite spins, despite being outside each others light cones. That means information must have moved between the particles faster than the speed of light. That violates one of the fundamental premises of special relativity. That is the surprise.
Because this is how all properties work in quantum mechanics. This was the point of my reference to the double slit experiment, which is the classic example of this idea (called "superposition"). In the double slit experiment, you shoot a particle at a barrier that has two openings in it, and watch where it goes. If you shoot a bunch of particles through at once, then they interact with each other and produce a particular pattern. If you shoot them through one at a time, and they randomly picked one of the two holes to go through, you would expec... (read more)