It should come as no surprise to people on this list that models often outperform experts. But these are generally finely calibrated models, integrating huge amounts of data, so this seems less surprising. How can the poor experts compete against that?
But sometimes the models are much simpler than that, and still perform better. For instance, the models could be linear, rather than having higher order complexities. These models can still outperform experts, because in practice, despite their beliefs that they are doing a non-linear task, expert decisions can often best be modelled as being entirely linear.
But surely the weights of the linear models are subtle and need to be set exactly? Not really. It seems that if you take a linear model, and weigh the variables by +1 or -1 depending on whether it has a positive or negative impact on the result, then you will get a model that still often outperforms experts. These models with ±1 weights are called improper linear models.
What's going on here? Well, there's been a bit of a dodge. I've been talking about "taking" a linear model, with "variables", and weighing the factors depending on a positive or negative "impact". And to do all that, you need experts. They are the ones that know which variables are important, and know the direction (positive or negative) in which they impact the result. They don't choose these variables by just taking random possibilities and then figuring out what the direction is. Instead, they understand the situation, to some extent, and choose important variables.
So that's the real role of the expert here: knowing what should go into the model, what really makes the underlying dependent variable change. Selecting and coding the variable information, in the terms that are often used.
But, just as experts can be very good at that task, they are human, and humans are terrible at integrating lots of information together. So, having selected the variables, they get regularly outperformed by proper linear models. And when you add the fact that the experts have selected variables of comparable importance, and that these variables are often correlated with each other, it's not surprising that they get outperformed by improper linear models as well.
I don't think this is why improper linear models work. If you have a large number of variables, most of which are irrelevant in the sense of being uncorrelated with the outcome, then the irrelevant variables will be randomly assigned to +1 or -1 weights and will on average cancel out, leaving the signal from the relevant variables who do not cancel each other out.
So even without an implicit prior from an expert relevance selection effect or any explicit prior enforcing sparsity, you would still get good performance from improper linear models. (And IIRC, when you use something like ridge regression or Laplacian priors, the typical result, especially in high-dimensional settings like genomics or biology, most of the variables do drop out or get set to zero, so even in these 'enriched' datasets, most of the variables are irrelevant. What's sauce for the goose is sauce for the gander.)
Adding in more irrelevant variables does change things quantitatively by lowering power due to increased variance and requiring more data, but I don't see how this leads to any qualitative transition from working to not working such that it might explain why they work. That seems to have more to do with the human subjects overweighting noise and the 'bet on sparsity' principle.
Nice. To make your proposed explanation more precise:
Take a random vector on the n-dim unit sphere. Project to the nearest (+1,-1)/sqrt(n) vector; what is the expected l2-distance / angle? How does it scale with n?
If this value decreases in n, then your explanation is essentially correct, or did you want to propose something else?
Start by taking a random vector x where each coordinate is unit gaussian (normalize later). The projection px just splits into positive coordinates and negative coordinates.
We are interested in E[ / |x| sqrt(n)].
If the dimension ... (read more)