Note: this image does not belong to me; I found it on 4chan. It presents an interesting exercise, though, so I'm posting it here for the enjoyment of the Less Wrong community.
For the sake of this thought experiment, assume that all characters have the same amount of HP, which is sufficiently large that random effects can be treated as being equal to their expected values. There are no NPC monsters, critical hits, or other mechanics; gameplay consists of two PCs getting into a duel, and fighting until one or the other loses. The winner is fully healed afterwards.
Which sword and armor combination do you choose, and why?
If you assume the payoffs are damage and not just victory, you can treat this as a 4x4 zero sum game since weapon choice has no effect on armor effectiveness and vice versa. Then you can calculate the damage per minute for every weapon vs. every armor, and dominance reasoning yields: blue sword, green armor.
But that assumption is probably not accurate and I'm too lazy to compute the 16x16 win/loss payoff matrix, so what Steve Rayhawk said.
Blue sword, green armor loses to green sword, blue armor: it deals (100-12)*0.9*80 = 6336 damage/minute and takes (50-0)*0.76*180 = 6840 damage/minute. rosyatrandom has the 16x16 table.