There are two aspects to the Goodhart problem which are often conflated. One is trivially true for all proxy-true utility pairs; but the other is not.
Following this terminology, we'll say that is the true goal, and is the proxy. In the range of circumstances we're used to, - that's what's makes a good proxy. Then the Goodhart problem has two aspects to it:
- Maximising does not increase as much as maximising would.
- When strongly maximising , starts to increase at a slower rate, and ultimately starts decreasing.
Aspect 1. is a tautology: the best way to maximise is to... maximise . Hence maximising is almost certainly less effective at increasing than maximising directly.
But aspect 2. is not a tautology, and need not be true for generic proxy-true utility pairs . For instance, some pairs have the reverse Goodhart problem:
- When strongly maximising , starts to increase at a faster rate, and ultimately starts increasing more than twice as fast as .
Are there utility functions that have anti-Goodhart problems? Yes, many. If have a Goodhart problem, then has an anti-Goodhart problem if .
Then in the range of circumstances we're used to, . And, as starts growing slower than , starts growing faster; when starts decreasing, starts growing more than twice as fast as :
Are there more natural utility functions that have anti-Goodhart problems? Yes. If for instance you're a total or average utilitarian, and you maximise the proxy "do the best for the worst off". In general, if is your true utility and is a prioritarian/conservative version of (eg or or other concave, increasing functions) then we have reverse Goodhart behaviour[1].
So saying that we expect Goodhart problems (in the second sense) means that we know something special about (and ). It's not a generic problem for all utility functions, but for the ones we expect to correspond to human preferences.
We also need to scale the proxy so that on the typical range of circumstances; thus the conservatism of is only visible away from the typical range. ↩︎
You have a true goal, V. Then you take the set of all potential proxies that have an observed correlation with V, let's call this S(V). By Goodhart's law, this set has the property that any U∈S(V) will with probability 1 be uncorrelated with V outside the observed domain.
Then you can take the set S(2U−V). This set will have the property that any U′∈S(2U−V) will with probability 1 be uncorrelated with 2U−V outside the observed domain. This is Goodhart's law, and it still applies.
Your claim is that there is one element, U∈S(2U−V) in particular, which will be (positively) correlated with 2U−V. But such proxies still have probability 0. So how is that anti-Goodhart?
Pairing up V and 2U−V to show equivalence of cardinality seems to be irrelevant, and it's also weird. 2U−V is an element of 2S(V)−V, and this depends on V.