Timeless physics is what you end up with if you take MWI, assume the universe is a standing wave, and remove the extraneous variables. From what I understand, for the most part you can take a standing wave and add a time-reversed version, you end up with a standing wave that only uses real numbers. The problem with this is that the universe isn't quite time symmetric.
If I ignore that complex numbers ever were used in quantum physics, it seems unlikely that complex numbers is the correct solution. Is there another one? Should I be reversing charge and parity as well as time when I make the standing real-only wave?
Why do you think I would say that the time-dependent Schrodinger equation doesn't do anything if the universe is in an energy eigenstate?
I guess I misread that. I still don't understand it.
The time-independent equation is how the world works. The time-dependent one also applies, since it's a more general case. The fact that it applies shows that the universe still looks like you'd expect it to, and it all adds up to normality.