Timeless physics is what you end up with if you take MWI, assume the universe is a standing wave, and remove the extraneous variables. From what I understand, for the most part you can take a standing wave and add a time-reversed version, you end up with a standing wave that only uses real numbers. The problem with this is that the universe isn't quite time symmetric.
If I ignore that complex numbers ever were used in quantum physics, it seems unlikely that complex numbers is the correct solution. Is there another one? Should I be reversing charge and parity as well as time when I make the standing real-only wave?
Please note that, while an appealing idea, timeless physics is not a physical theory but only a hope for one. As far as I know, it has no solid mathematical foundations separate from the mainstream and makes no new testable predictions.
With this caveat, why do you want to ignore the complex numbers, given that they are just a set of real commuting 2x2 matrices? Or do you want to get rid of all matrices (i.e. of all linear algebra) in physics? If so, what would be your motivation?
Really? Isn't it just the idea that Schroedinger's time-independant equation is the correct one? Is there not a time-independent version of the correct one (as opposed to the non-relativistic approximation I've seen)?
If you can remove complex numbers in this manner, you could use R, or R^2 in the same manner as you'd ... (read more)