A quick google search brings up "computation theory". This does not seem to be as precise as information theory, we cannot talk about "n units of computation" the same way we can talk about "m bits of information". In fact there does not seem to be a generally accepted fundamental unit of computation which we can talk about.
Computational complexity theory is well-developed but only talks about scaling.
Turing machines seem to be able to "hide" a lot of the work in the number of available symbols to go on the tape or the number of available states of the pointer.
Logic circuits haven't produced much and seem a bit arbitrary (why only OR, AND, and NOT gates?).
Seems like we need a theory of computation to qualitatively understand things like logical uncertainty.
If you can't do it with a Turing machine, maybe you can't do it. This sort of hedges against 'does someone come up with a better algorithm', or a more efficient data structure, so things don't get broken when something we thought was impossible is accomplished.
Other approaches include working out a minimum amount of computation, then looking at:
(Both might get thrown out of whack by quantum computers, if they pan out. Also, reversible computing might lower theoretical and practical costs.)
*This one can be affected by 'if someone buys hardware specifically for doing this once, they can reuse it' , if there's not enough padding.