Discusses the technical aspects of one of Googles AI projects. According to a pcworld the system "apes human memory and programming skills" (this article seems pretty solid, also contains link to the paper).
The abstract:
We extend the capabilities of neural networks by coupling them to external memory resources, which they can interact with by attentional processes. The combined system is analogous to a Turing Machine or Von Neumann architecture but is differentiable end-to-end, allowing it to be efficiently trained with gradient descent. Preliminary results demonstrate that Neural Turing Machines can infer simple algorithms such as copying, sorting, and associative recall from input and output examples.
(First post here, feedback on the appropriateness of the post appreciated)
I hate the term "Neural Network", as do many serious people working in the field.
There are Perceptrons which were inspired by neurons but are quite different. There are other related techniques that optimize in various ways. There are real neurons which are very complex and rather arbitrary. And then there is the greatly simplified Integrate and Fire (IF) abstraction of a neuron, often with Hebbian learning added.
Perceptrons solve practical problems, but are not the answer to everything as some would have you believe. There are new and powerful kernal methods that can automatically condition data which extend perceptrons. There are many other algorithms such as learning hidden Markov models. IF neurons are used to try and understand brain functionality, but are not useful for solving real problems (far too computationally expensive for what they do).
Which one of these quite different technologies is being referred to as "Neural Network"?
The idea of wiring perceptrons back onto themselves with state is old. Perceptrons have been shown to be able to emulate just about any function, so yes, they would be Turing complete. Being able to learn meanginful weights for such "recurrent" networks is relatively recent (1990s?).
I'd think that deep neural networks as here with e.g. backprogation thru time/BPP are meant.