Lo! A cartoon proof of Löb's Theorem!
Löb's Theorem shows that a mathematical system cannot assert its own soundness without becoming inconsistent. Marcello and I wanted to be able to see the truth of Löb's Theorem at a glance, so we doodled it out in the form of a cartoon. (An inability to trust assertions made by a proof system isomorphic to yourself, may be an issue for self-modifying AIs.)
It was while learning mathematical logic that I first learned to rigorously distinguish between X, the truth of X, the quotation of X, a proof of X, and a proof that X's quotation was provable.
The cartoon guide follows as an embedded Scribd document after the jump, or you can download as a PDF file. Afterward I offer a medium-hard puzzle to test your skill at drawing logical distinctions.
Cartoon Guide to Löb's ... by on Scribd
Cartoon Guide to Löb's Theorem - Upload a Document to Scribd
And now for your medium-hard puzzle:
The Deduction Theorem (look it up) states that whenever assuming a hypothesis H enables us to prove a formula F in classical logic, then (H->F) is a theorem in classical logic.
Let ◻Z stand for the proposition "Z is provable". Löb's Theorem shows that, whenever we have ((◻C)->C), we can prove C.
Applying the Deduction Theorem to Löb's Theorem gives us, for all C:
((◻C)->C)->C
However, those familiar with the logic of material implication will realize that:
(X->Y)->Y
implies
(not X)->Y
Applied to the above, this yields (not ◻C)->C.
That is, all statements which lack proofs are true.
I cannot prove that 2 = 1.
Therefore 2 = 1.
Can you exactly pinpoint the flaw?
I don't think there's a flaw in this argument. I'm pretty sure that ¬□C→C is a theorem of PA for any sentence C. However, even if we consider C to be a sentence like 2=1, that does not mean that we can conclude that C is a theorem of PA, since proving that there doesn't exist a proof for a given sentence in PA is equivalent to proving that PA is consistent, which is not possible if we assume that PA is consistent.
Thanks Sam. I thought about this some more and realized where I went wrong - I was applying the deduction theorem incorrectly (as other comments in this thread have pointed out).
By the way, when you say that PA proves its own inconsistency, do you mean that PA⊢□(¬Con(PA)) or that PA⊢¬Con(PA)? From your reasoning I agree that if we assume ¬□C→C then we can arrive at PA⊢□C and PA⊢□(¬C), from which we can conclude that PA⊢□(¬Con(PA)). If you meant that PA&#x... (read more)