Self-Representation in Girard’s System U, by Matt Brown and Jens Palsberg:
In 1991, Pfenning and Lee studied whether System F could support a typed self-interpreter. They concluded that typed self-representation for System F “seems to be impossible”, but were able to represent System F in Fω. Further, they found that the representation of Fω requires kind polymorphism, which is outside Fω. In 2009, Rendel, Ostermann and Hofer conjectured that the representation of kind-polymorphic terms would require another, higher form of polymorphism. Is this a case of infinite regress?We show that it is not and present a typed self-representation for Girard’s System U, the first for a λ-calculus with decidable type checking. System U extends System Fω with kind polymorphic terms and types. We show that kind polymorphic types (i.e. types that depend on kinds) are sufficient to “tie the knot” – they enable representations of kind polymorphic terms without introducing another form of polymorphism. Our self-representation supports operations that iterate over a term, each of which can be applied to a representation of itself. We present three typed self-applicable operations: a self-interpreter that recovers a term from its representation, a predicate that tests the intensional structure of a term, and a typed continuation-passing-style (CPS) transformation – the first typed self-applicable CPS transformation. Our techniques could have applications from verifiably type-preserving metaprograms, to growable typed languages, to more efficient self-interpreters.
Decidability is not actually what we want here :-p. I could go into elaborate descriptions of what we want, but those would be theory-laden with my own ideas. Read my backlog on here to get an idea of the general direction I'm thinking in.
This result is not trivial, but it's useful for talking about Turing-complete programming languages, not about logic.