Some context for this new arXiv paper from my group at NYU:
- We're working toward sandwiching experiments using our QuALITY long-document QA dataset, with reading time playing the role of the the expertise variable. Roughly: Is there some way to get humans to reliably answer hard reading-comprehensions questions about a ~5k-word text, without ever having the participants or any other annotators take the ~20 minutes that it would require to actually read the text.
- This is an early writeup of some negative results. It's earlier in the project that I would usually write something like this up, but some authors had constraints that made it worthwhile, so I'm sharing what we have.
- Here, we tried to find out if single-turn debate leads to reliable question answering: If we give people high-quality arguments for and against each (multiple-choice) answer choices, supported by pointers to key quotes in the source text, can they reliably answer the questions under a time limit?
- We did this initial experiment in an oracle setting; We had (well-incentivized, skilled) humans write the arguments, rather than an LM. Given the limits of current LMs on long texts, we expect this to give us more information about whether this research direction is going anywhere.
- It didn't really work: Our human annotators answered at the same low accuracy with and without the arguments. The selected pointers to key quotes did help a bit, though.
- We're planning to keep pursuing the general strategy, with multi-turn debate—where debaters can rebut one another's arguments and evidence—as the immediate next step.
- Overall, I take this as a very slight update in the direction that debate is difficult to use in practice as an alignment strategy. Slight enough that this probably shouldn't change your view of debate unless you were, for some reason, interested in this exact constrained/trivial application of it.
crossposting my comments from Slack thread:
Here are some debate trees from experiments I did on long-text QA on this example short story:
Tree
Debater view 1
Debater view 2
Our conclusion was that we don’t expect debate to work robustly in these cases. In our case this was mostly because in cases where the debate is things like ’is there implied subtext A?’, human debaters don’t really know why they believe some text does or doesn’t have a particular implication. They have some mix of priors about what the text might be saying (which can’t really be justified with debate), and various updates to that based on style, word choice, etc, where humans don’t necessarily have introspective access to what exactly in the text made them come to the conclusion.My guess is that’s not the limitation you’re running into here - I’d expect that to just be the depth.
There are other issues with text debates, like if the evidence is distributed across many quotes that each only provide a small amount of evidence - in this case the honest debater needs to have decent estimates for how much evidence each quote provides, so they can split their argument into something like ‘there are 10 quotes that weakly support position A’; ‘the evidence that these quotes provide is additive rather than redundant’.
[edited to fix links]
Yep. (Thanks for re-posting.) We're pretty resigned to the conclusion that debate fails to reach a correct conclusion in at least some non-trivial cases—we're mainly interested in figuring out (i) whether there are significant domains or families of questions for which it will often reach a conclusion, and (ii) whether it tends to fail gracefully (i.e., every outcome is either correct or a draw).