Omega will either award you $1000 or ask you to pay him $100. He will award you $1000 if he predicts you would pay him if he asked. He will ask you to pay him $100 if he predicts you wouldn't pay him if he asked.
Omega asks you to pay him $100. Do you pay?
This problem is roughly isomorphic to the branch of Transparent Newcomb (version 1, version 2) where box B is empty, but it's simpler.
Here's a diagram:
If event S is empty, then for any Q you make up, it's true that [for all s in S, Q]. This statement also holds if S was defined to be empty if [Not Q], or if Q follows from S being non-empty.
Yes you can make logical deductions of that form, but my point was that you can't feed those conlusions back into the decision making process without invalidating the assumptions that went into those conclusions.