Omega will either award you $1000 or ask you to pay him $100. He will award you $1000 if he predicts you would pay him if he asked. He will ask you to pay him $100 if he predicts you wouldn't pay him if he asked.
Omega asks you to pay him $100. Do you pay?
This problem is roughly isomorphic to the branch of Transparent Newcomb (version 1, version 2) where box B is empty, but it's simpler.
Here's a diagram:
It doesn't implement the counterfactual where depending on what response the agent assumes to give on observing a request to pay, it can agent-consistently conclude that Omega will either award or not award $1000. Even if we don't require that Omega is a decision-theoretic agent with known architecture, the decision problem must make the intended sense.
In more detail. Agent's decision is a strategy that specifies, for each possible observation (we have two: Omega rewards it, or Omega asks for money), a response. If Omega gives a reward, there is no response, and if it asks for money, there are two responses. So overall, we have two strategies to consider. The agent should be able to contemplate the consequences of adopting each of these strategies, without running into inconsistencies (observation is an external parameter, so even if in a given environment, there is no agent-with-that-observation, decision algorithm can still specify a response to that observation, it would just completely fail to control the outcome). Now, take your Omega implementation, and consider the strategy of not paying from agent's perspective. What would the agent conclude about expected utility? By problem specification, it should (in the external sense, that is not necessarily according to its own decision theory, if that decision theory happens to fail this particular thought experiment) conclude that Omega doesn't give it an award. But your Omega does knowably (agent-provably) give it an award, hence it doesn't play the intended role, doesn't implement the thought experiment.
I think it would be fair to say that cousin_it's (ha! Take that English grammar!) description of Omega's behaviour does fit the problem specification we have given but certainly doesn't match the problem we intended. That leaves us to fix the wording without making it look too obfuscated.
Taking another look at the actual problem specification it actually doesn't look all that bad. The translation into logical ... (read more)