Omega will either award you $1000 or ask you to pay him $100. He will award you $1000 if he predicts you would pay him if he asked. He will ask you to pay him $100 if he predicts you wouldn't pay him if he asked.
Omega asks you to pay him $100. Do you pay?
This problem is roughly isomorphic to the branch of Transparent Newcomb (version 1, version 2) where box B is empty, but it's simpler.
Here's a diagram:
I'll echo prase's request. It seems to me that given that he's made the offer and I am confident of his predictions, I ought not expect to pay him. This is true regardless of what decision I make: if I decide to pay him, I ought to expect to fail.
Perhaps I'm only carrying counterfeit bills, or perhaps a windstorm will come up and blow the money out of my hands, or perhaps by wallet has already been stolen, or perhaps I'm about to have a heart attack, or whatever.
Implausible as these things are, they are far more plausible than Omega being wrong. The last thing I should consider likely is that, having decided to pay, I actually will pay.
ETA - I am apparently confused on more fundamental levels than I had previously understood, not least of which is what is being presumed about Omega in these cases. Apparently I am not presumed to be as confident of Omega's predictions as I'd thought, which makes the rest of this comment fairly irrelevant. Oops.
You just described the reasoning you would go through when making a decision. That would seem to be answer enough to demonstrate that this is a decision problem.