So the jackpot in the Ohio lottery is around 25 million, and the chance of winning it is one in roughly 14 million, with tickets at 1 dollar a piece. It appears to me that roughly a quarter million tickets are sold each drawing; so, supposing you win, the probability of someone else also winning is 1 - (1 - 1/14e6)^{250000}=2%, which does not significantly reduce the expectation value of a ticket. So, unless I'm making a silly mistake somewhere, buying lottery tickets has positive expected value. (I find this counterintuitive; where are all the economists who should be picking up this free money? But I digress.)
I pointed this out to my wife, and said that it might be worth putting a dollar into it; and she very cogently asked, "Then why not make it 100 dollars?" Why not, indeed! Is there any sensible way of deciding how much to put into an option that has a positive expected value, but very low chance of payoff?
I find the results of the Kelly criterion extremely counterintuitive, but it does answer my question. Thanks. I note that, presumably, we are discussing a lifetime strategy rather than a one-off, so the bankroll should not be my current cash reserves but the net present value of my expected lifetime income stream; but the Kelly fraction is so small that the optimal bet still works out to less than a dollar. Fascinating!
Note that if your thinking is something like "I should probably forgo buying a latte this morning and buy a lottery tickets instead", then the Kelly criterion does not apply (it does not affect your lifetime income). Instead you should consider how much of your revenue-neutral funds you can spare and weigh the emotional downside of forgoing one expense (a drink: mmm, feels good) against the actual and potential emotional upside of another (a lottery ticket: what if I win, what if I win! + potentially winning - bummer, I lost!).