Summary: the problem with Pascal's Mugging arguments is that, intuitively, some probabilities are just too small to care about. There might be a principled reason for ignoring some probabilities, namely that they violate an implicit assumption behind expected utility theory. This suggests a possible approach for formally defining a "probability small enough to ignore", though there's still a bit of arbitrariness in it.
Yes, something went wrong in your analysis.
I suggested mapping an unbounded utility function onto a finite interval. This preserves the order of the preferences in the unbounded utility function.
In my "unbounded" function, I prefer saving 1,000,001 people to saving 1,000,000 and getting a dollar. So I have the same preference with the bounded function, and so I press the teal button.
If you want to do all operations -- notably, adding utility and dollars -- before mapping to the finite interval, you still fall prey to the Pascal's Mugging and I don't see the point of the mapping at all in this case.