Summary: the problem with Pascal's Mugging arguments is that, intuitively, some probabilities are just too small to care about. There might be a principled reason for ignoring some probabilities, namely that they violate an implicit assumption behind expected utility theory. This suggests a possible approach for formally defining a "probability small enough to ignore", though there's still a bit of arbitrariness in it.
It is an assumption to make asymptotically (that is, for the tails of the distribution), which is reasonable due to all the nice properties of exponential family distributions.
I'm not implying that.
EDIT:
As a simple example, if you model the number of lives saved by each intervention as a normal distribution, you are immune to Pascal's Muggings. In fact, if your utility is linear in the number of lives saved, you'll just need to compare the means of these distributions and take the maximum. Black swan events at the tails don't affect your decision process.
Using normal distributions may be perhaps appropriate when evaluating GiveWell interventions, but for a general purpose decision process you will have, for each action, a probability distribution over possible future world state trajectories, which when combined with an utility function, will yield a generally complicated and multimodal distribution over utility. But as long as the shape of the distribution at the tails is normal-like, you wouldn't be affected by Pascal's Muggings.
But it looks like the shape of the distributions isn't normal-like? In fact, that's one of the standard EA arguments for why it's important to spend energy on finding the most effective thing you can do: if possible intervention outcomes really were approximately normally distributed, then your exact choice of an intervention wouldn't matter all that much. But actually the distribution of outcomes looks very skewed; to quote The moral imperative towards cost-effectiveness:
... (read more)