Open problems are clearly defined problems1 that have not been solved. In older fields, such as Mathematics, the list is rather intimidating. Rationality, on the other, seems to have no list.
While we have all of us here together to crunch on problems, let's shoot higher than trying to think of solutions and then finding problems that match the solution. What things are unsolved questions? Is it reasonable to assume those questions have concrete, absolute answers?
The catch is that these problems cannot be inherently fuzzy problems. "How do I become less wrong?" is not a problem that can be clearly defined. As such, it does not have a concrete, absolute answer. Does Rationality have a set of problems that can be clearly defined? If not, how do we work toward getting our problems clearly defined?
See also: Open problems at LW:Wiki
1: "Clearly defined" essentially means a formal, unambiguous definition. "Solving" such a problem would constitute a formal proof.
Quite a bit is known about the neurology behind face recognition. No one understands the algorithm well enough to build a fusiform gyrus from scratch, but that doesn't mean the fact that there is an algorithm is mysterious.
Even if we did not have any understanding of the neurology, I'm not sure why pointing to an empirical record of successful face recognition shouldn't be fairly convincing. Is the point that we could be lying about our record?
(In the specific example given, you could probably get a fair bit of mileage from explaining the nature of vision, even without the specifics of face-recognition. I'm not really sure what broader lesson that might have though, as I don't fully understand the nature of the question you're asking.)