I have almost no direct knowledge of mathematics. I took various mathematics courses in school, but I put in the minimal amount of effort required to pass and immediately forgot everything afterwards.
When people learn foreign languages, they often learn vocabulary and grammar out of context. They drill vocabulary and grammar in terms of definitions and explanations written in their native language. I, however, have found this to be intolerably boring. I'm conversational in Japanese, but every ounce of my practice came in context: either hanging out with Japanese friends who speak limited English, or watching shows and adding to Anki new words or sentence structures I encounter.
I'm convinced that humans must spike their blood sugar and/or pump their body full of stimulants such as caffeine in order to get past the natural tendency to find it unbearably dull to memorize words and syntax by rote and lifeless connection with the structures in their native language.
I've tried to delve into some mathematics recently, but I get the impression that most of the expositions fall into one of two categories: Either (1) they assume that I'm a student powering my day with coffee and chips and that I won't find it unusual if I'm supposed to just trust that once I spend 300 hours pushing arbitrary symbols around I'll end up with some sort of insight. Or (2) they do enter the world of proper epistemological explanations and deep real-world relevance, but only because they expect that I'm already quite well-versed in various background information.
I don't want an introduction that assumes I'm the average unthinking student, and I don't want an exposition that expects me to understand five different mathematical fields before I can read it. What I want seems likely to be uncommon enough that I might as well simply say: I don't care what field it is; I just want to jump into something which assumes no specifically mathematical background knowledge but nevertheless delves into serious depths that assume a thinking mind and a strong desire for epistemological sophistication.
I bought Calculus by Michael Spivak quite a while ago because the Amazon reviews led me to believe it may fit these considerations. I don't know whether that's actually the case or not though, as I haven't tried reading it yet.
Any suggestions would be appreciated.
My main academic interests relate to the fundamentals of communication (analogous to micro economics), along with the pattern by which information and knowledge flows throughout society (like macro economics).
Until recently my focus has been on natural language, which is why I decided to learn Japanese. Without deep understanding in a second language, my endeavor to understand the process of natural-language communication (including not only words but also gestures and so on) would be hopelessly limited. I've also spent many thousands of hours constructing various artificial verbal languages for personal note-taking and linguistic experimentation.
Over the past few days, however, I've started to turn my attention to mathematics. While languages such as English, Japanese, and so forth are one-dimensional systems isomorphic to a large range of reality and constrained by the oddities of the automatic pathways we call our "natural-language hardware", my understanding is that many fields of mathematics function as more complex and precise isomorphic systems which operate in terms of brain functions more properly called "S2" or "manual". Often they transcend the 1D line of verbal language to 2D diagrammatic representations.
See this passage from Ernst Mach (1838-1916):
Clearly his vision of mathematics and other pencil-and-paper artificial representational systems growing and eventually combining into a single general-use international language has not come to pass in the intervening 100+ years. Mathematics has remained a specific-use tool that boasts high levels of complexity and precision within its isolated sections of thought representation and world modeling, while having extremely low coverage of the range of topic space. Humans have made huge industrial advancements, but we still fall back on the tribal device we call "words" for most of our communication attempts.
I've spent a huge number of hours designing artificial verbal-language systems which resemble natural languages except without the grammatical irregularities or folk psychology and physics, but I hold no illusion as to the point. It's a stopgap measure that I'm using to gain greater understanding of the limitations of word-based communication in an age where such systems still reign supreme. My hope for the future lies not in words, but in general-use diagrammatic or visual communication systems which include software involvement.
It would be inefficient or even irresponsible of me to attempt to make meaningful contributions within this field without possessing a solid understanding of the historical development and epistemological underpinnings of certain high-bandwidth mathematical systems. The conclusion is that it's unimportant which mathematical field I pursue at least in the beginning, provided the field is important within the context of human societal development and in engaging the material I gain a nuanced understanding of the content and a deep appreciation of how the originators created the system. Only once I develop fluency in a sufficient number of areas will I know which specific fields to consider further.
In short: I'm interested in developing a general-purpose 2D or 3D visual representational system. Attempting such an endeavor without having an appreciation for historical attempts to create non-verbal languages would be careless.
I'll suggest investigating the problem of "squaring the circle." It has it's roots in the origins of mathematics, passes through geometric proofs (including the notions of formal proofs and proof from elementary axioms), was unsolved for 2000 years in the face of myriad attempts, and was proved impossible to solve using the ... (read more)