I have almost no direct knowledge of mathematics. I took various mathematics courses in school, but I put in the minimal amount of effort required to pass and immediately forgot everything afterwards.
When people learn foreign languages, they often learn vocabulary and grammar out of context. They drill vocabulary and grammar in terms of definitions and explanations written in their native language. I, however, have found this to be intolerably boring. I'm conversational in Japanese, but every ounce of my practice came in context: either hanging out with Japanese friends who speak limited English, or watching shows and adding to Anki new words or sentence structures I encounter.
I'm convinced that humans must spike their blood sugar and/or pump their body full of stimulants such as caffeine in order to get past the natural tendency to find it unbearably dull to memorize words and syntax by rote and lifeless connection with the structures in their native language.
I've tried to delve into some mathematics recently, but I get the impression that most of the expositions fall into one of two categories: Either (1) they assume that I'm a student powering my day with coffee and chips and that I won't find it unusual if I'm supposed to just trust that once I spend 300 hours pushing arbitrary symbols around I'll end up with some sort of insight. Or (2) they do enter the world of proper epistemological explanations and deep real-world relevance, but only because they expect that I'm already quite well-versed in various background information.
I don't want an introduction that assumes I'm the average unthinking student, and I don't want an exposition that expects me to understand five different mathematical fields before I can read it. What I want seems likely to be uncommon enough that I might as well simply say: I don't care what field it is; I just want to jump into something which assumes no specifically mathematical background knowledge but nevertheless delves into serious depths that assume a thinking mind and a strong desire for epistemological sophistication.
I bought Calculus by Michael Spivak quite a while ago because the Amazon reviews led me to believe it may fit these considerations. I don't know whether that's actually the case or not though, as I haven't tried reading it yet.
Any suggestions would be appreciated.
Your comment made me think, and I'll look up some of the recommendations. I like the analogy with musicians and also the part where you talked about how the analogy breaks down.
However, I'd like to offer a bit of a different perspective to the original poster on this part of what you said.
Your advice is good, given this assumption. But this assumption may or may not be true. Given that the post says:
I think there's the possibility that the original poster would be interested in computational mathematics.
Also, it's not either or. It's a false dichotomy. Learning both is possible and useful. You likely know this already, and perhaps the original poster does as well, but since the original poster is not familiar with much math, I thought I'd point that out in case it's something that wasn't obvious. It's hard to tell, writing on the computer and imagining a person at the other end.
If the word "computational" is being used to mean following instructions by rote without really understanding why, or doing the same thing over and over with no creativity or insight, then it does not seem to be what the original poster is looking for. However, if it is used to mean creatively understanding real world problems, and formulating them well enough into math that computer algorithms can help give insights about them, then I didn't see anything in the post that would make me warn them to steer clear of it.
There are whole fields of human endeavor that use math and include the term "computational" and I wouldn't want the original poster to miss out on them because of not realizing that the word may mean something else in a different context, or to think that it's something that professional mathematicians or scientists or engineers don't do much. Some mathematicians do proofs most of the time, but others spend time on computation, or even proofs about computation.
Fields include computational fluid dynamics, computational biology, computational geometry...the list goes on.
Speaking of words meaning different things in different contexts, that's one thing that tripped me up when I was first learning some engineering and math beyond high school. When I read more advanced books, I knew when I was looking at an unfamiliar word that I had to look it up, but I hadn't realized that some words that I already was familiar with had been redefined to mean something else, given the context, or that the notation had symbols that meant one thing in one context and another thing in another context. For example, vertical bars on either side of something could mean "the absolute value of" or it could mean "the determinant of this matrix", and "normal forces" meant "forces perpendicular to the contact surface". Textbooks are generally terribly written and often leave out a lot.
In other words, the jargon can be sneaky and sound exactly like words that you already know. It's part of why mathematical books seem so nonsensical to outsiders.
Excellent points; "rigorous" would have been a better choice. I haven't yet had the time to study any computational fields, but I'm assuming the ones you list aren't built on the "fuzzy notions, and hand-waving" that Tao talks about.
I should also add I don't necessarily agree 100% with every in Lockhart's Lament; I do think, however, that he does an excellent job of identifying problems in how secondary school math is taught and does a better job than I could of contrasting "follow the instructions" math with "real" math to a lay person.