I wrote this blogpost because I thought it took an excessive amount of digging to understand what a spinor was. My original motivation was to understand wavefunctions more concretely since I recently discovered that wavefunctions are spinor-valued, not (necessarily) complex-valued. That took me down a rabbit hole of gamma matrices, geometric algebra, quaternions, and about a dozen other topics.
I think physics is taught very badly. Modern physical theories are built on some very heavy and very powerful mathematical machinery. That machinery is absolutely worth learning, but expositions on physical phenomena seem to have no middle ground between "breadth-first" (require all the background before being able to understand anything), "assembly-level" (discuss the raw equations without any intuition), and "vague analogies." It seems entirely possible to introduce slices of very abstract math as needed so people can go deep without having to go wide and without having to sacrifice either intuition or precision.
Anyway. This blogpost was a proof of concept. It assumes a background in linear algebra, no more than what's taught to a STEM freshman. I try to explain a vertical slice of the mathematical machinery needed to understand spinors. I'm not a physicist, nor do I have access to one, so I might have gotten something wrong. If you notice any errors, please let me know.
In the 2D matrix representation, the basis element corresponding to the real part of a quaternion is the identity matrix. So scaling the real part results in scaling the (real part of the) diagonal of the 2D matrix, which corresponds to a scaling operation on the spinor. It incidentally plays the same role on 3D objects: it scales them. Plus, it plays a direct role in rotations when it's -1 (180 degree rotation) or 1 (0 degree rotation). Same as with i, j, and k, the exact effect of changing the real part of the quaternion isn't obvious from inspection when it's summed with other non-zero components. For example, it's hard to tell by inspection what the 2 or the 3j is doing in the quaternion 2+3j.
In total, quaternions represent both scaling, rotating, and any mix of the two. I should have been clearer about that in the post. Spinors for quaternions do include any "state changes" resulting from the real part of the quaternion as well as any changes resulting from i, j, and k components, so the spinor does use all degrees of freedom.
The change in representation between 2-quaternion and 4-complex spinors is purely notational. It doesn't affect any of the math or underlying representations. Since a quaternion operation can be represented by a 2x2 complex matrix, you can represent a 2-quaternion operation as the tensor product of two 2x2 complex matrices, which would give you a 4x4 complex matrix. That's where 4x4 gamma matrices come from-- each is a tensor products of two 2x2 Pauli matrices. For all calculations and consequences, you get the exact same answers whether you choose to represent the operations and spinors as quaternions or complex numbers.