"Hypercomputation" is a term coined by two philosophers, Jack Copeland and Dianne Proudfoot, to refer to allegedly computational processes that do things Turing machines are in principle incapable of doing. I'm somewhat dubious of whether any of the proposals for "hypercomputation" are really accurately described as computation, but here, I'm more interested in another question: is there any chance it's possible to build a physical device that answers questions a Turing machine cannot answer?
I've read a number of Copeland and Proudfoot's articles promoting hypercomputation, and they claim this is an open question. I have, however, seen some indications that they're wrong about this, but my knowledge of physics and computability theory isn't enough to answer this question with confidence.
Some of the ways to convince yourself that "hypercomputation" might be physically possible seem like obvious confusions, for example if you convince yourself that some physical quality is allowed to be any real number, and then notice that because some reals are non-computable, you say to yourself that if only we could measure such a non-computable quantity then we could answer questions no Turing machine could answer. Of course, the idea of doing such a measurement is physically implausible even if you could find a non-computable physical quantity in the first place. And that mistake can be sexed up in various ways, for example by talking about "analog computers" and assuming "analog" means it has components that can take any real-numbered value.
Points similar to the one I've just made exist in the literature on hypercomputation (see here and here, for example). But the critiques of hypercomputation I've found tend to focus on specific proposals. It's less clear whether there are any good general arguments in the literature that hypercomputation is physically impossible, because it would require infinite-precision measurements or something equally unlikely. It seems like it might be possible to make such an argument; I've read that the laws of physics are consiered to be computable, but I don't have a good enough understanding of what that means to tell if it entails that hypercomputation is physically impossible.
Can anyone help me out here?
What about the Drescher/Barbour argument that the Second Law is an artifact of observers' ability to record time histories? That is, the only states that will contain "memories" (however implemented) of past states are the ones where entropy is higher than in the "remembering" state, because all processes of recording increase entropy.
So even in those thought experiments where you "reverse time" of the chaotic billiards-ball-world back to a low-entropy t = 0 and keep going so that entropy increases in the negative time direction, the observers in that "negative time" state will still regard t = 0 to be in their past. Furthermore, any scenario you could set up where someone is only entangled with stuff that you deliberately decrease the entropy of (by increasing entropy outside the "bubble"), will result in that person thinking that the flow of time was the opposite of what you think.
I don't know how well this arguments meshes with the possibility of such GR solutions.