For no reason in particular I'm wondering about the size of the smallest program that would constitute a starting point of a recursively self-improving AI.
The analysis of FOOM as a self-amplifying process would seem to indicate that in principle one could get it started from a relatively modest starting point -- perhaps just a few bytes of the right code could begin the process. Or could it? I wonder whether any other considerations give tighter lower-bounds.
One consideration is that FOOM hasn't already happened -- at least not here on Earth. If the smallest FOOM seed were very small (like a few hundred bytes) then we would expect evolution to have already bumped into it at some point. Although evolution is under no specific pressure to produce a FOOM, it has probably produced over the last few billion years all the interesting computations up to some minor level of complexity, and if there were a FOOM seed among those then we would see the results about us.
Then there is the more speculative analysis of what minimal expertise the algorithm constituting the FOOM seed would actually need.
Then there is the fact that any algorithm that naively enumerates some space of algorithms qualifies in some sense as a FOOM seed as it will eventually hit on some recursively self-improving AI. But that could take gigayears so is really not FOOM in the usual sense.
I wonder also whether the fact that mainstream AI hasn't yet produced FOOM could lower-bound the complexity of doing so.
Note that here I'm referring to recursively self-improving AI in general -- I'd be interested if the answers to these questions change substantially for the special case of friendly AIs.
Anyway, just idle thoughts, do add yours.
A human is specified by a lot more than it's genome. You have ribosomes and mitochondria and other starting stuff. And you grow in a very specific womb environment. And if you don't have certain classes of interaction as a child you won't end up as a very good general intelligence (isolation or lack of nutrients at early stages can both lead to serious problems.) This is directly analogous to my remark about substrates. So yes, you could use a human as some form of possible upper bound for general intelligence, but it isn't clear if that meets the criteria for fooming and defining how many bits that is is a lot tougher than just pointing to the genome.
My intuition is that the cellular machinery and prenatal environment are required much more for meeting the biochemical needs of a human embryo than as providers of extra information. The hard part where you need to have a huge digital data string mostly exactly right is in the DNA, while the growth environment is more of a warm soup that has an intricate mixture of stuff but is far too noisy to actually carry anything close to the amount of actionable information the genome does.
Standard notions are also selling short the massive amount of very clever wor... (read more)