Today's post, On Being Decoherent was originally published on 27 April 2008. A summary (taken from the LW wiki):
When a sensor measures a particle whose amplitude distribution stretches over space - perhaps seeing if the particle is to the left or right of some dividing line - then the standard laws of quantum mechanics call for the sensor+particle system to evolve into a state of (particle left, sensor measures LEFT) + (particle right, sensor measures RIGHT). But when we humans look at the sensor, it only seems to say "LEFT" or "RIGHT", never a mixture like "LIGFT". This, of course, is because we ourselves are made of particles, and subject to the standard quantum laws that imply decoherence. Under standard quantum laws, the final state is (particle left, sensor measures LEFT, human sees "LEFT") + (particle right, sensor measures RIGHT, human sees "RIGHT").
Discuss the post here (rather than in the comments to the original post).
This post is part of the Rerunning the Sequences series, where we'll be going through Eliezer Yudkowsky's old posts in order so that people who are interested can (re-)read and discuss them. The previous post was Where Experience Confuses Physicists, and you can use the sequence_reruns tag or rss feed to follow the rest of the series.
Sequence reruns are a community-driven effort. You can participate by re-reading the sequence post, discussing it here, posting the next day's sequence reruns post, or summarizing forthcoming articles on the wiki. Go here for more details, or to have meta discussions about the Rerunning the Sequences series.
So this is sorta off-topic for this thread, but I cannot see where one can start a new one. I posted the following questions at http://lesswrong.com/lw/q2/spooky_action_at_a_distance_the_nocommunication/, as I cannot find the "rerun" version of it. Anyway, here goes. FWIW, the topic was about EPR experiments.
For all these types of experiments, how do they "aim" the particle so it hits its target from far away? It would seem that the experimenters would know pretty much where the particle is when it shoots out of the gun (or whatever), so would not the velocity be all over the place? In the post on the Heisenberg principle, there was an example of letting the sun shine through a hole in a piece of paper, which caused the photons to spread pretty widely, pretty quickly.
Does the polarization vector change as the photon moves along? It seems to be very similar to a photon's "main" wave function, as it can be represented as a complex number (and is even displayed as an arrow, like Feynman uses). But I know those Feynman arrows spin according to the photon's wavelength.
Finally - and this is really tripping me up - why can we put in the minus sign in the equation that you say "we will need" later, instead of a + sign? If you have two blobs of amplitude, you need to add them to get the wave function, yes? If that is not the case, I have SEVERELY misunderstood the most basic posts of this sequence.
Only if they make the departing aperture small. A wider aperture allows the departing wave to be tight.
It depends which basis you look at it in. It is conventional to consider a photon's 'polarization' to... (read more)