The source is here. I'll restate the problem in simpler terms:
You are one of a group of 10 people who care about saving African kids. You will all be put in separate rooms, then I will flip a coin. If the coin comes up heads, a random one of you will be designated as the "decider". If it comes up tails, nine of you will be designated as "deciders". Next, I will tell everyone their status, without telling the status of others. Each decider will be asked to say "yea" or "nay". If the coin came up tails and all nine deciders say "yea", I donate $1000 to VillageReach. If the coin came up heads and the sole decider says "yea", I donate only $100. If all deciders say "nay", I donate $700 regardless of the result of the coin toss. If the deciders disagree, I don't donate anything.
First let's work out what joint strategy you should coordinate on beforehand. If everyone pledges to answer "yea" in case they end up as deciders, you get 0.5*1000 + 0.5*100 = 550 expected donation. Pledging to say "nay" gives 700 for sure, so it's the better strategy.
But consider what happens when you're already in your room, and I tell you that you're a decider, and you don't know how many other deciders there are. This gives you new information you didn't know before - no anthropic funny business, just your regular kind of information - so you should do a Bayesian update: the coin is 90% likely to have come up tails. So saying "yea" gives 0.9*1000 + 0.1*100 = 910 expected donation. This looks more attractive than the 700 for "nay", so you decide to go with "yea" after all.
Only one answer can be correct. Which is it and why?
(No points for saying that UDT or reflective consistency forces the first solution. If that's your answer, you must also find the error in the second one.)
If we're assuming that all of the deciders are perfectly correlated, or (equivalently?) that for any good argument for whatever decision you end up making, all the other deciders will think of the same argument, then I'm just going to pretend we're talking about copies of the same person, which, as I've argued, seems to require the same kind of reasoning anyway, and makes it a little bit simpler to talk about than if we have to speak as though that everyone is a different person but will reliably make the same decision.
Anyway:
Something is being double-counted here. Or there's some kind of sleight-of-hand that vaguely reminds me of this problem, where it appears that something is being misplaced but you're actually just being misdirected by the phrasing of the problem. (Not that I accuse anyone of intentionally doing that in any of the versions of this problem.) I can't quite pin it down, but it seems like whatever it is that would (under any circumstance) lead you to assign a .9 decision-theoretic weighting to the tails-world is already accounted for by the fact that there are 9 of you (i.e. 9 who've been told that they're deciders) in that world. I'm not sure how to formally express what I'm getting at, but I think this is moving in the right direction. Imagine a tree of agents existing as a result of the coin flip; the heads branch contains one decider and nine non-deciders; the tails branch contains nine deciders and one non-decider. And each decider needs to have its own judgment of decision-theoretic weighting... but that varies depending on what kind of decision it is. If each one assigns .9 weight to the possibility that it is in the tails branch, then that would be relevant if every agent's decision were to be counted individually (say, if each one had to guess either heads or tails, and would get $1 if correct; they'd do better guessing tails than by flipping a coin to decide), but in this case the decision is collective and only counted once — so there's no reason to count the multiple copies of you as being relevant to the decision in the first place. It's like if in tails-world you run a (constant) program nine times and do something based on the output, and in heads-world you run it once and do something else based on the output. The structure of the problem doesn't actually imply that the algorithm needs to know how many times it's being executed. I think that's the misdirection.
(Edit: Sorry, that was sort of a ramble/stream-of-consciousness. The part from "If each one assigns..." onward is the part I currently consider relevant and correct.)
It looks like the double-count is that you treat yourself as an autonomous agent when you update on the evidence of being a decider, but as an agent of a perfectly coordinated movement when measuring the payoffs. The fact that you get the right answer when dividing the payoffs in the 9-decider case by 9 points in this direction.