In a recent comment, I suggested that correlations between seemingly unrelated periodic time series share a common cause: time. However, the math disagrees... and suggests a surprising alternative.
Imagine that we took measurements from a thermometer on my window and a ridiculously large tuning fork over several years. The first set of data is temperature T over time t, so it looks like a list of data points [(t0, T0), (t1, T1), ...]. The second set of data is mechanical strain e in the tuning fork over time, so it looks like a list of data points [(t0, e0), (t1, e1), ...]. We line up the temperature and strain data according to time, yielding [(T0, e0), (T1, e1), ...] and find a significant correlation between the two, since they happen to have similar periodicity.
Recalling Judea Pearl, we suggest that there is almost certainly some causal relationship between the temperature outside the window and the strain in the ridiculously large tuning fork. Common sense suggests that neither causes the other, so perhaps they have some common cause? The only other variable in the problem is time, so perhaps time is the common cause. This sort of makes sense, since changes in time intuitively seem to cause the changes in temperature and strain.
Let's check that intuition with some math. First, imagine that we ignore the time data. Now we just have a bunch of temperature data points [T0, T1, ...] and strain data points [e0, e1, ...]. In fact, in order to truly ignore time data, we cannot even order the points according to time! But that means that we no longer have any way to line up the points T0 with e0, T1 with e1, etc. Without any way to match up temperature points to corresponding strain points, the temperature and strain data are randomly ordered, and the correlation disappears!
We have just performed a d-separation. When time t was known (i.e., controlled for), the variables T and e were correlated. But when t was unknown, the variables were uncorrelated. Now, let's wave our hands a little and equate correlation with dependence. If time were a common cause of temperature and strain, then we should see that T and e are correlated without knowledge of time, but the correlation disappears when controlling for time. However, we see exactly the opposite structure: controlling for t induces the correlation. This pattern is called a "collider", and it implies that time is a common effect of temperature and strain. Rather than time causing the oscillations in our time series, the oscillations in our time series cause time.
Whoa. Now that the math has given us the answer, let's step back and try to make sense of it. Imagine that everything in the universe stopped moving for some time, and then went back to moving exactly as before. How could we measure how much time passed while the universe was stopped? We couldn't. For all practical purposes, if nothing changes, then time has stopped. Time, then, is an effect of motion, not vice versa. This is an old idea from philosophy/physics (I think I originally read it in one of Stephen Hawking's books). We've just rederived it.
But we may still wonder: what caused the correlation between temperature and strain? A common effect cannot cause a correlation, so where did it come from? The answer is that there was never any correlation between temperature and strain to begin with. Given just the temperature and strain data, with no information about time (e.g. no ordering or correspondence between points), there was no correlation. The correlation was induced by controlling for time. So the correlation is only logical; there is no physical cause relating the two, at least within our model.
Actually, there is a theorem which states that two variables X and Y are independent if and only if f(X) and g(Y) are uncorrelated for any two functions f,g. That means that you cannot bring things into correlation by any independent transformations whatsoever exactly when the variables are independent. Specifically regarding affine transformations, you would have to add some multiple of X to Y in order to get a correlation, which is obviously silly.
Thanks for the link to RCCP, I hadn't seen the history of d-sep before. You should definitely check out the causality section of Highly Advanced Epistemology 101 for Beginners and possibly Judea Pearl's book Causality, which contain a more up-to-date discussion and address many of your concerns much better than I could.
I like your outside view of insight. That was part of the reason I pointed out that this is not a new insight, and has been found many times by other people before.
Edit after reading pragmatist's comment: Knowing your background, I'll add some technical meat.
First, regarding correlation versus dependence, consider any functions f(T) and g(e). The exact same argument made in the post still applies: without time, there is no ordering of the points, so we cannot establish any correlation. Since there is no correlation for any functions f,g the variables are independent. The argument could be made that the correlation is undefined rather than zero, but if we take a Bayesian approach then we should probably be summing over all permutations (since there is no reason to prefer any particular permutation). Intuitively, that seems like it ought to go to zero given enough data, but I'm not sure if it's identically zero for smaller data sets.
Regarding quantum, RCCP works under the MWI which everyone seems to love around here (the world-branch becomes a hidden common cause). But setting that argument aside, we can happily restrict ourselves to non-chaotic macroscopic situations.
Just a heads up, in case Ilya considers it indelicate to mention this himself: He's an expert in this area, and definitely familiar with Judea Pearl's work (Pearl was his Ph.D. supervisor).