"I started to post a comment, but it got long enough that I’ve turned my comment into a blog post."
So the study of second-order consequences is not logic at all; to tease out all the second-order consequences of your second-order axioms, you need to confront not just the forms of sentences but their meanings. In other words, you have to understand meanings before you can carry out the operation of inference. But Yudkowsky is trying to derive meaning from the operation of inference, which won’t work because in second-order logic, meaning comes first.
... it’s important to recognize that Yudkowsky has “solved” the problem of accounting for numbers only by reducing it to the problem of accounting for sets — except that he hasn’t even done that, because his reduction relies on pretending that second order logic is logic.
Except insofar as the mathematicians, unknown to each other, have different ideas of what constitutes a valid rule of inference.
A logical system is a mathematical obect. If the problem is that different mathematicians might think they're talking about the same object when they're really talking about different ones, then I don't see why logical systems, out of all mathematical objects, should be particularly exempt from this problem.
Also, of course, to put this in the context of the original post, if we're talking about second order logic, then of course there can be no automated proof-checkers.
You appear to be confused here. The rest of your post is good.