Does anyone know something about this alteration of Klebsiella planticola? Paywalled paper here. (If someone has got access please PM me, I would like to read the paper to write a more fleshed out article.)
While I am not convinced that it would really have spread to every terrestrial ecosystem, or even every wheat field and I am not even sure if it could compete successfully with the wild type, I certainly would not bet the world on that. Even if it might only have become a nasty crop bug instead of an ecosystem killer, I think this may be the closest encounter with a true existential risk we have had so far. This suggests, that even our current low end biotech may be the greatest existential risk we face at the moment. Or is this just hyped bullshit for some reason I do not see right now (without reading the paper)?
Edit: Upon reading the original paper I am quite sure Cracked.com greatly exagerated the potential threat. 10^8 cfu (colony formin units) K. planticolata per gram soil (dry weight) was added on day 0, but after 8 weeks only 10^2 cfu survived (this is true for both wild type and modified K. planticolata). This suggests, that K. planticolata in the wild has typical densities more like 10^2 cfu per g than 10^8 cfu per g. 10^2 cfu per g is nowhere near enough to produce lethal ethanol concentrations in the soil, even if the modified strain could compete in the wild. Furthermore the concentration of the modified K. planticolata decreased faster than the concentration of the wild type suggesting reduced fitness of the GMO. On the other hand after 8 weeks both K. planticolata strains arrived at the same density of 100 cfu per g indicating comparable medium term survivability in unsterilized soil (I am not sure if indigenous K. planticolata which could compete with the GMO was present in the soil sample used). Yes, they did avoid the obvious failure mode of not differentiating between wild type and modified K. planticolata during recovery of K. planticola strains from the samples.
So if we could grow crops underwater we could get a lot more energy?
In a manner of speaking yes. That's part of how kelp and seaweed (and to a lesser extent coral) manage to grow so fricking fast and part of how free-floating phytoplankton replicates fast enough to feed a biomass of zooplankton larger than itself at any given moment.
Only a fraction of the wattage of the biological energy available to plants that is converted from light can actually be captured by the carbon-fixation system as carbs and biomass-production, a lot more just can't get stored long-term. In marine algae with all the extra carbon floating aro... (read more)