"Statistically significant results" mean that there's a 5% chance that results are wrong in addition to chance that the wrong thing was measures, chance that sample was biased, chance that measurement instruments were biased, chance that mistakes were made during analysis, chance that publication bias skewed results, chance that results were entirely made up and so on.
"Not statistically significant results" mean all those, except chance of randomly mistaken results even if everything was ran correct is not 5%, but something else, unknown, and dependent of strength of the effect measured (if the effect is weak, you can have study where chance of false negative is over 99%).
So results being statistically significant or not, is really not that useful.
For example, here's a survey of civic knowledge. Plus or minus 3% measurement error? Not this time, they just completely made up the results.
Take home exercise - what do you estimate Bayesian chance of published results being wrong to be?
5 minutes one google didn't turn up the study I'm thinking of, but I remember reading a study that claimed that around 2/3 of all published studies were false positives due to publication bias. (the p value they reported was sufficiently small to believe it).
I did, however, find a metastudy that studied publication bias on papers about publication bias.link.
They found "statistically insignificant" (p = 0.13) evidence for false positives there too.
The way I tend to deal with them now is treating them as weak evidence unless I'm interested enough to look further.
If the P value not really low, I'll make guesses at how popular a topic of study it is (how many times can you try for a positive result?), how I heard about the study (more possibility for selection bias), how controversial the topic is (how strong is the urge to fudge something?), and what my prior probability would be.
For example, when someone tells me about a study that claims "X causes cancer" and 1) P = .04 2) it would somehow benefit the person if the claim were true 3) I see no prior reason for a link between X and cancer and 4) see possible other causes for the correlation that were not obviously corrected for, then I assign very little weight to this evidence.
If I find a study by googling the topic, P = 0.001, the topic isn't all that controversial, and no one would even think to test it if they did not assign high prior probability, then I'll file it under "known".
I think you are thinking of Ioannidis et al - Why Most Published Research Findings are False